164. On the Cut Operation in Gentzen Calculi

By Kiyoshi Iséki

Kobe University

(Comm. by K. KUNUGI, M.J.A., Dec. 13, 1956)

By Gentzen's LK system, we shall mean a formal system with the following schemata:

Axiom schema

 $\mathfrak{A} \to \mathfrak{A}$

Logical rules of inferences

Logical rules of mittenede			
	in succedent	in antecedent	
\supset	$\mathfrak{A}, \Gamma \rightarrow \theta, \mathfrak{B}$	$\Gamma \rightarrow \theta, \mathfrak{A} \mathfrak{B}, \Gamma \rightarrow \theta$	
2	$\Gamma \rightarrow \theta, \mathfrak{A} \supset \mathfrak{B}$	$\mathfrak{A} \supset \mathfrak{B}, \ \Gamma \rightarrow \theta$	
&	$\Gamma \rightarrow \theta, \mathfrak{A} \Gamma \rightarrow \theta, \mathfrak{B}$	$\mathfrak{A}, \ \Gamma \to \theta \qquad \mathfrak{B}, \ \Gamma \to \theta$	
a	$\Gamma \rightarrow \theta, \mathfrak{A \& B}$	$\overline{\mathfrak{ABB}, \ \Gamma \to \theta} \overline{\mathfrak{ABB}, \ \Gamma \to \theta}$	
V	$\Gamma \to \theta, \mathfrak{A} \qquad \Gamma \to \theta, \mathfrak{B}$	$\mathfrak{A}, \Gamma \rightarrow \theta \mathfrak{B}, \Gamma \rightarrow \theta$	
v	$\Gamma \to \theta, \mathfrak{A} \lor \mathfrak{B} \overline{\Gamma \to \theta, \mathfrak{A} \lor \mathfrak{S}}$	$\mathfrak{B} \qquad \mathfrak{A} \lor \mathfrak{B}, \Gamma \to \theta$	
Г	$\mathfrak{A}, \Gamma \rightarrow \theta$	$\Gamma \rightarrow heta$, \mathfrak{A}	
·	$\Gamma \rightarrow \theta$, $\exists \mathfrak{A}$	$\exists \mathfrak{A}, \ \Gamma \to \theta$	
V	$\Gamma \rightarrow \theta, \mathfrak{A}(a)$	$\mathfrak{A}(t), \ \Gamma \rightarrow heta$	
·	$\Gamma \rightarrow \theta$, $\forall x \mathfrak{A}(x)$	$\overline{Vx\mathfrak{A}(x), \Gamma ightarrow heta}$	
Я	$\Gamma ightarrow heta, \mathfrak{A}(t)$	$\mathfrak{A}(a), \Gamma \rightarrow \theta$	
	$\Gamma \rightarrow \theta, \mathcal{I} x \mathfrak{A}(x)$	$\exists x\mathfrak{A}(x), \Gamma \rightarrow \theta$	
Structural rules of inferences			
	in succedent	in antecedent	
Thinning	$\Gamma \to \theta$	$\Gamma \rightarrow \theta$	
8	$\Gamma \rightarrow \theta, \mathfrak{A}$	$\mathfrak{A}, \Gamma \rightarrow \theta$	
Contraction	$\Gamma \to \theta, \mathfrak{A}, \mathfrak{A}$	$\mathfrak{A}, \mathfrak{A}, \Gamma \rightarrow \theta$	
	$\Gamma \rightarrow \theta, \mathfrak{A}$	$\mathfrak{A}, \ \Gamma \rightarrow \theta$	
Interchang	$\Gamma \to \Lambda, \mathfrak{A}, \mathfrak{B}, \theta$	Γ , \mathfrak{A} , \mathfrak{B} , $\theta \rightarrow \Lambda$	
	$\Gamma \to \Lambda, \mathfrak{B}, \mathfrak{A}, \theta$	$\Gamma, \mathfrak{B}, \mathfrak{A}, \theta \rightarrow \Lambda$	
Cut	$\varDelta \rightarrow \Lambda, \mathfrak{A}$		
2000	$\varDelta, \Gamma ightarrow \Lambda, heta$.		

In the above schemata, $\mathfrak{A}, \mathfrak{B}, \mathfrak{C}, \cdots$ are arbitrary formulae, a, b, c, \cdots are free variables and s, t, \cdots are terms. $\Gamma, \Delta, \theta, \cdots$ are arbitrary finite sequences of zero or more formulae. For the detail on the schemata, see G. Gentzen [1], S. C. Kleene [2, 3].

In his papers, G. Gentzen [1] proved a principal theorem: any provable proposition in LK-system is provable without cut. And he observed that the cut is equivalent to the mix rule: let \mathfrak{A} be a formula,

K. Iséki

 $\Pi, \Phi, \Sigma, \Omega$ are sequences of zero or more formulae such that Φ and Σ contain \mathfrak{A} .

 $\varphi_{\mathfrak{A}}$ and $\Sigma_{\mathfrak{A}}$ are the results of dropping all \mathfrak{A} in φ and Σ respectively. Then

mix
$$\frac{\Pi \rightarrow \varphi, \ \Sigma \rightarrow Q}{\Pi, \ \Sigma_{\mathfrak{A}} \rightarrow \varphi_{\mathfrak{A}}, \ Q}.$$

In this Note, we shall show the

Theorem 1. The cut in LK-system is replaced by

(*)

$$\frac{\Gamma \to \mathfrak{A} \supseteq \mathfrak{B}, \Delta \quad \Pi, \Gamma \to \mathfrak{A}, \Xi}{\Gamma, \Pi \to \mathfrak{B}, \Delta, \Xi}.$$
Proof. Suppose the cut rule, then

$$\frac{\mathfrak{A} \to \mathfrak{A}, \mathfrak{B} \to \mathfrak{B}}{\Gamma \to \Delta, \mathfrak{A} \supseteq \mathfrak{B}, \mathfrak{A} \to \mathfrak{B}}$$

$$\frac{\Gamma \to \Delta, \mathfrak{A} \supseteq \mathfrak{B} \quad \mathfrak{A} \supseteq \mathfrak{B}, \mathfrak{A} \to \mathfrak{B}}{\Gamma, \mathfrak{A} \to \Delta, \mathfrak{B}} \quad \text{cut}$$

$$\frac{\Pi, \Gamma \to \mathfrak{A}, \Xi \quad \mathfrak{A}, \Gamma \to \Delta, \mathfrak{B}}{\Pi, \Gamma \to \mathfrak{B}, \Delta, \Xi} \quad \text{cut}.$$

$$\frac{\mathfrak{A}, \Gamma \to \theta}{\Delta, \mathfrak{A}, \Gamma \to \theta} \\
\frac{\Delta, \Gamma \to \mathfrak{A} \supset \theta}{\Delta, \Gamma \to \Lambda, \theta}.$$
(*)

Therefore, Theorem 1 is proved.

Theorem 2. Any provable proposition in LK-system is provable without (*).

Theorem 2 is formulated in Gentzen's intuitionistic LJ system as follows.

Theorem 3. The cut of LJ-system is replaced by (**) $\frac{\Gamma \to \mathfrak{A} \supset \mathfrak{B} \quad \Gamma, \Pi \to \mathfrak{A}}{\Gamma \to \mathfrak{A}}.$

$$\Gamma, \Pi \rightarrow \mathfrak{B}$$

The inference rules of LJ-system are the following rules:

Axiom schema

$$\mathfrak{A} o \mathfrak{A}$$

Logical rules of inferences

in succedent

$$\begin{array}{c} \begin{array}{c} \text{in antecedent} \\ \begin{array}{c} & \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{B} \\ \hline \Gamma \rightarrow \mathfrak{U} \& \mathfrak{B} \end{array} \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{B} \\ \hline \Pi \rightarrow \mathfrak{U} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \\ \end{array} \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \\ \end{array} \end{array}$$
 \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \mathcal{U}, \Gamma \rightarrow \mathfrak{H} \end{array} \\ \end{array} \\

720

V	$\Gamma \rightarrow \mathfrak{A}$	$\mathfrak{A}, \Gamma \rightarrow \theta \mathfrak{B}, \Gamma \rightarrow \theta$		
	$\Gamma \to \mathfrak{A} \lor \mathfrak{B}$	$\mathfrak{A} \& \mathfrak{B}, \ \Gamma \to \theta$		
	$\Gamma \rightarrow \mathfrak{B}$			
	$\Gamma \to \mathfrak{A} \lor \mathfrak{B}$			
٦	$\mathfrak{A}, \Gamma \rightarrow$	$\Gamma \to \mathfrak{A}$		
	$I' \rightarrow \exists \mathfrak{A}$	२ थ, <i>Г</i> →		
V	$\Gamma \rightarrow \mathfrak{A}(a)$	$\mathfrak{A}(t), \ \Gamma \to \Theta$		
	$\Gamma \to V x \mathfrak{A}(x)$	$\forall x\mathfrak{A}(x), \ \Gamma \to \theta$		
${f E}$	$\Gamma \rightarrow \mathfrak{A}(t)$	$\mathfrak{A}(a), \Gamma \rightarrow \theta$		
	$\Gamma \rightarrow H x \mathfrak{A}(x)$	$\exists x\mathfrak{N}(x), \Gamma \rightarrow \theta$		
tructural rules of informage				

Structural rules of inferences in succedent

 $\frac{\Gamma \rightarrow}{\Gamma \rightarrow \mathfrak{A}}$

in antecedent

$$\frac{\Gamma \to \theta}{\mathfrak{A}, \Gamma}$$

$$\frac{\mathfrak{A}, \mathfrak{A}, \Gamma \to \theta}{\mathfrak{A}, \Gamma \to \theta}$$

$$\frac{\Gamma, \mathfrak{A}, \mathfrak{B}, \theta \to \Delta}{\Gamma, \mathfrak{B}, \mathfrak{A}, \theta \to \Delta}$$

Cut rule

$$\frac{\Gamma \to \mathfrak{A} \quad \mathfrak{A}, \Pi \to \theta}{\Gamma, \Pi \to \theta}$$

The succedent for $\Gamma \to \Pi$ is empty or a formula. The restriction on variables in the schemata for V, \mathcal{A} is as usual. For the detail, see G. Gentzen [1].

The proof of Theorem 3 is very similar to Theorem 2. Thus we shall omit it.

References

- G. Gentzen: Untersuchungen über das logische Schliessen I, II, Math. Z., 39, 176-210, 405-431 (1934-5).
- [2] S. C. Kleene: Introduction to Metamathematics, New York (1952).
- [3] S. C. Kleene: Permutability of inferences in Gentzen's calculi LK and LJ, Memoirs of Am. Math. Soc., No. 10 (1952).