163. On Interpolations of Analytic Functions. II (Fundamental Results)

By Tetsujiro Kakehashi
(Comm. by K. Kunugi, m.J.A., Dec. 13, 1956)

2. In this Note we consider a generalization of the result mentioned in the introduction of this paper.

Let D be a bounded closed points set whose complement K with respect to the extended plane is connected and regular in the sense that K possesses a Green's function with pole at infinity. Let $w=\phi(z)$ map K onto the region $|w|>1$ so that the points at infinity correspond to each other. Let Γ_{ρ} be the level curve determined by $|w|=\rho>1$.

Let the sequence of points (P) which lie on D satisfy the condition that the sequence of functions

$$
-\frac{W_{n}(z)}{\Delta^{n} w^{n}}=\frac{\left(z-z_{1}^{(n)}\right)\left(z-z_{2}^{(n)}\right) \cdots\left(z-z_{n}^{(n)}\right)}{[\Delta \phi(z)]^{n}}
$$

converges to a function $\lambda(w)$, single valued, analytic and nonvanishing for w exterior to the unit circle $|w|=1$, and uniformly on any bounded closed points set exterior to the unit circle, that is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{W_{n}(z)}{[\Delta w]^{n}}=\lambda(w) \neq 0 \quad \text { for } \quad|w|>1 \tag{17}
\end{equation*}
$$

where Δ is the capacity of D.
Let $f(z)$ be a function single valued and analytic throughout the interior of the level curve $\Gamma_{\mathrm{p}}:|w|=|\phi(z)|=\rho>1$ but not analytic regular on Γ_{ρ}. Then the sequence of polynomials $P_{n}(z ; f)$ of respective degrees n which interpolate to $f(z)$ in all the zeros of $W_{n+1}(z)$ is given by

$$
\begin{equation*}
P_{n}(z ; f)=\frac{1}{2 \pi i} \int_{\Gamma_{R}} \frac{W_{n+1}(t)-W_{n+1}(z)}{W_{n+1}(t)} \frac{f(t)}{t-z} d t: \quad(1<R<\rho) \tag{18}
\end{equation*}
$$

and we have, for z which satisfies $|\phi(z)|=|w|<R$,

$$
\begin{equation*}
R_{n}(z ; f) \equiv f(z)-P_{n}(z ; f)=\frac{1}{2 \pi i} \int_{\Gamma_{R}} \frac{W_{n+1}(z)}{W_{n+1}(t)} \frac{f(t)}{t-z} d t: \quad(1<R<\rho) \tag{19}
\end{equation*}
$$

In this case we have the following theorem.
Theorem 1. Let D be a closed limited points set whose complement K with respect to the extended plane is connected and regular in the sense that K possesses a Green's function with pole at infinity. Let $W=\phi(z) \operatorname{map} K$ onto the region $|w|>1$ so that the points at infinity correspond to each other.

Let the function $f(z)$ be single valued and analytic throughout
the interior of the level curve $\Gamma_{\rho}:|w|=|\phi(z)|=\rho>1$ but not analytic regular on Γ_{ρ}^{\prime}, and (P) be a sequence of points sets which satisfies the condition (17).

Then the sequence of polynomials $P_{n}(z ; f)$ of respective degrees n found by interpolation to $f(z)$ in all the zeros of $W_{n+1}(z)$ converges to $f(z)$ at every point interior to Γ_{p}, uniformly on any closed set interior to Γ_{ρ}, and diverges at every point exterior to Γ_{p}. Moreover, we have

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|R_{n}(z ; f)\right|^{\frac{1}{n}}=\frac{|w|}{\rho} \quad \text { for } \quad 1<|w|=|\phi(z)|<\rho, \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
\varlimsup_{n \rightarrow \infty}\left|P_{n}(z ; f)\right|^{\frac{1}{n}}=\frac{|w|}{\rho} \quad \text { for } \quad 1<|w|=|\phi(z)|>\rho . \tag{21}
\end{equation*}
$$

The first part of the theorem follows easily from the equations (20) and (21).

If we put $f(z)=F(w)$, the function $F(w)$ is single valued and analytic throughout the interior of the region between two circles $C_{\rho}:|w|=\rho>1$ and $C_{r}:|w|=r \leqq 1$, but not analytic regular on C_{ρ} by conditions of $f(z)$. Hence the function $F(w)$ can be expanded into Laurent's series

$$
F(w)=\sum_{n=-\infty}^{\infty} A_{n}\left(\frac{w}{\rho}\right)^{n}=\sum_{n=-\infty}^{\infty} a_{n} \lambda_{n}\left(\frac{w}{\rho}\right)^{n},
$$

where a_{n} and λ_{n} satisfy (4), (5) and (6).
At first we prove the equation (20). From the equation (19), we have

$$
R_{n}(z ; f)=\frac{1}{2 \pi i} \int_{1<|\xi|=R<p} \frac{W_{n+1}(z)}{W_{n+1}(t)} \frac{F(\zeta)}{t-z} \frac{d \zeta}{\phi^{\prime}(t)}: \zeta=\phi(t), 1<|w|<R,
$$

where $\phi^{\prime}(t)$ is non-vanishing on K. If we put for any point z lying on K and interior to the level curve Γ_{p}

$$
\begin{aligned}
\varphi_{n}(\zeta) & \equiv \varphi_{n}(\zeta ; z)=\frac{W_{n+1}(z)}{W_{n+1}(t)}\left(\frac{\zeta}{w}\right)^{n+1} \frac{1}{(t-z) \phi^{\prime}(t)} \\
& =\frac{(\Delta \zeta)^{n+1}}{W_{n+1}(t)} \frac{W_{n+1}(z)}{(\Delta w)^{n+1}} \frac{1}{(t-z) \phi^{\prime}(t)}: \zeta=\phi(t), w=\phi(z),
\end{aligned}
$$

the sequence of functions $\varphi_{n}(\zeta)$ converges uniformly to $\frac{\lambda(w)}{\lambda(\zeta)} \frac{1}{(t-z) \phi^{\prime}(t)}$ single valued, analytic and non-vanishing on a closed domain $1<|w|<R^{\prime \prime} \leqq|\zeta| \leqq R^{\prime},\left(R^{\prime \prime}<\rho<R^{\prime}\right)$.

By Lemma 3, we can verify that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} \frac{1}{\lambda_{n}} & \left|\left(\frac{\rho}{w}\right)^{n+1} R_{n}(z ; f)\right| \\
& =\varlimsup_{\lim _{n \rightarrow \infty}} \frac{\rho}{\lambda_{n}}\left|\frac{\rho^{n}}{2 \pi i} \int_{c_{R}} \varphi_{n}(\zeta) F(\zeta) \zeta^{-n-1} d \zeta\right|: 1<|w|<R<\rho
\end{aligned}
$$

$$
=\varlimsup_{n \rightarrow \infty} \frac{\rho}{\lambda_{n}}\left|\gamma_{n}^{(n)}\right| \quad \text { for } \quad 1<|w|=|\phi(z)|<\rho
$$

is bounded and positive, where $\gamma_{k}^{(n)}$ are defined by

$$
\varphi_{n}(\zeta) F(\zeta)=\sum_{k=-\infty}^{\infty} \gamma_{k}^{(n)}\left(\frac{\zeta}{\rho}\right)^{k} .
$$

Accordingly we can verify the equation

$$
\lim _{n \rightarrow \infty} \left\lvert\, R_{n}(z ; f)^{\frac{1}{n}}=\frac{|w|}{\rho} \quad\right. \text { for } \quad \rho>|w|=|\phi(z)|>1 .
$$

Thus the sequence of polynomials $P_{n}(z ; f)$ converges to $f(z)$ on K interior to Γ_{ρ}, consequently at every point interior to $\Gamma_{\mathrm{\rho}}$, and converges uniformly on any closed set interior to Γ_{p}. Thus the convergence of $P_{n}(z ; f)$ has been proved.

Next we shall prove the relation (21). From the equation (18), we have

$$
P_{n}(z ; f)=\frac{1}{2 \pi i} \int_{1<||| |-R<p} \frac{W_{n+1}(t)-W_{n+1}(z)}{W_{n+1}(t)} \frac{F(\zeta)}{t-z} \underset{\phi^{\prime}(t)}{d \zeta} ; \zeta=\phi(t), w=\phi(z) .
$$

For any point z exterior to the level curve Γ_{p}, the sequence of functions

$$
\begin{aligned}
\varphi_{n}(\zeta) & \equiv \varphi_{n}(\zeta ; z)=\frac{W_{n+1}(t)-W_{n+1}(z)}{W_{n+1}(t)(t-z)}\left(\frac{\zeta}{w}\right)^{n+1} \frac{1}{\phi^{\prime}(t)} \\
& =\frac{(\Delta \zeta)^{n+1}}{W_{n+1}(t)}\left\{\frac{W_{n+1}(t)}{(\Delta w)^{n+1}}-\frac{W_{n+1}(z)}{(\Delta w)^{n+1}}\right\} \frac{1}{(t-z) \phi^{\prime}(t)}
\end{aligned}
$$

converges uniformly to $\frac{-\lambda(w)}{\lambda(\zeta)(t-z) \phi^{\prime}(t)}$ single valued, analytic and non-vanishing on a closed domain $1<R^{\prime \prime} \leqq|\zeta| \leqq R^{\prime}<|w|,\left(R^{\prime \prime}<\rho<R^{\prime}\right)$. By Lemma 3 we can verify that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} & \frac{1}{\lambda_{n}}\left|\left(\frac{\rho}{w}\right)^{n+1} P_{n}(z ; f)\right| \\
& =\overline{\lim }_{n \rightarrow \infty} \frac{\rho}{\lambda_{n}}\left|\frac{\rho^{n}}{2 \pi i} \int_{|\zeta|=R} \varphi_{n}(\zeta) F(\zeta) \zeta^{-n-1} d \zeta\right| \\
& =\overline{\lim }_{n \rightarrow \infty} \frac{\rho}{\lambda_{n}}\left|\gamma_{n}^{(n)}\right| \quad \text { for } z \text { exterior to } \Gamma_{\mathrm{p}},
\end{aligned}
$$

is bounded and positive. Thus the relation

$$
\overline{\lim }_{n \rightarrow \infty}\left|P_{n}(z ; f)\right|^{\frac{1}{n}}=\frac{|w|}{\rho} \quad \text { for } z \text { exterior to } \Gamma_{\rho}(|\phi(z)|>\rho)
$$

follows at once. Accordingly, the sequence of polynomials $P_{n}(z ; f)$ of respective degrees n diverges at every point exterior to the level curve Γ_{ρ}. Thus the theorem has been established.
3. In this paragraph, we consider some examples of the theorem fore-mentioned.

Let $\mu(\theta) \geqq 0$ be a function defined and measurable in the interval $-\pi \leqq \theta \leqq \pi$, for which the integrals

$$
\begin{equation*}
\int_{-\pi}^{\pi} \mu(\theta) d \theta>0, \quad \int_{-\pi}^{\pi}|\log \mu(\theta)| d \theta \tag{22}
\end{equation*}
$$

exist. With such a function $\mu(\theta)$ we can associate a uniquely determined analytic function $D(z ; \mu) \equiv D(z)$, regular and non-zero for $|z|<1$ with $D(0)>0$, which satisfies

$$
\begin{equation*}
\lim _{r \rightarrow 1-0} D\left(r e^{i \theta}\right)=D\left(e^{i \theta}\right), \quad \mu(\theta)=\left|D\left(e^{i \theta}\right)\right|^{2} \tag{23}
\end{equation*}
$$

Let $\left\{\phi_{n}(z)\right\}$ be the set of ortho-normal polynomials on the unit circle $C:|z|=1$ corresponding to the weight function $\mu(\theta)$, that is, $\phi_{n}(z)$ satisfy

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi} \phi_{n}(z) \overline{\phi_{m}(z)} \mu(\theta) d \theta=\left\{\begin{array}{l}
1: n=m \\
0: n \neq m, \quad \text { where } \quad z=e^{i \theta} .
\end{array}\right.
$$

Then it is known that, in the exterior of the unit circle, the sequence of function $\frac{\phi_{n}(z)}{z^{n}}=\frac{k_{n} z^{n}+k_{n-1} z^{n-1}+\cdots+k_{0}}{z^{n}}$ converges to the function $\left\{\bar{D}\left(z^{-1}\right)\right\}^{-1}$ uniformly on any closed set exterior to the unit circle, that is, we have

$$
\lim _{n \rightarrow \infty} \frac{\phi_{n}(z)}{z^{n}}=\lim _{n \rightarrow \infty} \frac{k_{n} z^{n}+k_{n-1} z^{n-1}+\cdots+k_{0}}{z^{n}}=\left\{\bar{D}\left(z^{-1}\right)\right\}^{-1}:|z|>1
$$

It is easily verified that the first coefficient k_{n} of $\phi_{n}(z)$ satisfies $\lim _{n \rightarrow \infty} k_{n}=\lim _{n \rightarrow \infty} \lim _{z \rightarrow \infty} z^{-n} \phi_{n}(z)=\{D(0)\}^{-1}$.
Thus we have

$$
\lim _{n \rightarrow \infty} \frac{k_{n}^{-1} \phi_{n}(z)}{z^{n}}=\lim _{n \rightarrow \infty} \frac{z^{n}+\cdots}{z^{n}}=D(0)\left\{\bar{D}\left(z^{-1}\right)\right\}^{-1}:|z|>1,
$$

where the function defined by the last term is single valued, analytic and non-vanishing in the exterior of the unit circle.

Accordingly, we can verify that the sequence of points

$$
z_{1}^{(n)}, z_{2}^{(n)}, \cdots, z_{n}^{(n)} ; \quad n=1,2, \cdots
$$

defined by all the zeros of $\phi_{n}(z)$ satisfies the condition of Theorem 1. Now a theorem follows at once as a corollary of Theorem 1.

Theorem 2. Let $f(z)$ be a function single valued and analytic throughout the interior of the circle $C_{\rho}:|z|=\rho>1$. Let $\left\{\Phi_{n}(z)\right\}$ be the ortho-normal set of polynomials $\phi_{n}(z)$ of respective degrees n corresponding to a weight function $\mu(\theta):-\pi \leqq \theta \leqq \pi$ for which the integrals (22) exist. Then the sequence of polynomials $P_{n}(z ; f)$ of respective degrees n found by interpolation to $f(z)$ in all the zeros of $\phi_{n+1}(z)$ converges to $f(z)$ at every point interior to C_{ρ}, uniformly on any closed points set interior to C_{p}. And $\left\{P_{n}(z ; f)\right\}$ diverges at every point exterior to C_{p} as n tends to infinity.

The first part of this theorem (the convergence of the sequence $P_{n}(z ; f)$) has been found by Szegö ${ }^{11}$ in the more generalized form.

1) G. Szegö: Über orthogonale Polynome, Math. Z., 9, 218-270 (1921).

Let $S_{n}(z ; f)$ be the partial sums of respective degrees n obtained by Fourier-expansion of $f(z)$ by the ortho-normal set $\left\{\phi_{n}(z)\right\}$. Then it is known that the sequence of polynomials $S_{n}(z ; f)$ converges to $f(z)$ at every point interior to C_{ρ} and diverges at every point exterior to C_{ρ}. Accordingly, we can verify that the exact convergenceregion of the sequences $\left\{P_{n}(z ; f)\right\}$ and $\left\{S_{n}(z ; f)\right\}$ coincide to each other.

Theorem 2 can be generalized to such a case that the sequence of points (P) is determined by the zeros of an ortho-normal set defined on a more general curve on z-plane. But we shall consider only the case such that an ortho-normal set is defined on the real segment $[-1,1]$.

Let $w(x) \geqq 0$ be a weight function on the interval $-1 \leqq x \leqq 1$ such that for $\mu(\theta)=w(\cos \theta)|\sin \theta|$ the integrals (22) exist. If $D(w ; \mu) \equiv D(w)$ denotes the analytic function corresponding to $\mu(\theta)$ in the sense fore-mentioned, it is known ${ }^{2}$ that the set of ortho-normal polynomials $p_{n}(x)$ of respective degrees n, associated with the weight function $w(x)$, satisfies

$$
\begin{gathered}
\lim _{n \rightarrow \infty} w^{-u} p_{n}(z)=\lim _{n \rightarrow \infty} \frac{k_{n} z^{n}+k_{n-1} z^{n-1}+\cdots+k_{0}}{w^{n}} \\
=(2 \pi)^{-\frac{1}{2}}\left\{D\left(w^{-1}\right)\right\}^{-1} \quad \text { for } \quad|w|>1,
\end{gathered}
$$

where z is in the complex plane cut along the real segment $[-1,1]$ and $z=\frac{1}{2}\left(w+w^{-1}\right)$.

The first coefficient k_{n} of $p_{n}(z)$ satisfies

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} 2^{-n} k_{n}=\lim _{n \rightarrow \infty} \lim _{z \rightarrow \infty}(2 z)^{-n} p_{n}(z) \\
& \quad=\lim _{n \rightarrow \infty} \lim _{w \rightarrow \infty} w^{-n} p_{n}(x)=(2 \pi)^{-\frac{1}{2}}\{D(0)\}^{-1},
\end{aligned}
$$

and the capacity of the real segment $[-1,1]$ is known to be equal to $\frac{1}{2}$. Now the equation

$$
\lim _{n \rightarrow \infty} \frac{k_{n}^{-1} p_{n}(z)}{2^{-n} w^{n}}=\lim _{n \rightarrow \infty} \frac{z^{n}+\cdots}{2^{-n} w^{n}}=(2 \pi)^{-\frac{1}{2}} D(0)\left\{D\left(z^{-1}\right)\right\}^{-1}
$$

follows at once. Accordingly, we can verify that the sequence of points

$$
x_{1}^{(n)}, x_{2}^{(n)}, \cdots, x_{n}^{(n)} ; \quad n=1,2, \cdots
$$

defined by all the zeros of $p_{n}(z)$ satisfies the condition of Theorem 1.
In this case, the level curve $\Gamma_{\rho}:|w|=\rho>1$ is defined by the ellipse with foci at ± 1 and with semi-axes $\frac{1}{2}\left(\rho+\rho^{-1}\right)$ and $\frac{1}{2}\left(\rho-\rho^{-1}\right)$. Thus we have

Theorem 3. Let $f(z)$ be a function single valued and analytic throughout the interior of the ellipse $\Gamma_{\rho}: \rho>1$ with foci at ± 1 and
2) G. Szegö: Orthogonal polynomials, Am. Math. Soc. Coll. Publ., 23 (1939).
with semi-axes $\frac{1}{2}\left(\rho+\rho^{-1}\right)$ and $\frac{1}{2}\left(\rho-\rho^{-1}\right)$ but not analytic regular on Γ_{p}. Let $\left\{p_{n}(x)\right\}$ be the set of ortho-normal polynomials $p_{n}(x)$ of respective degrees n corresponding to a weight function $w(x)$ on $1 \leqq x \leqq-1$ which satisfies the conditions fore-mentioned.

Then the sequence of polynomials $P_{n}(z ; f)$ of respective degrees n found by interpolation to $f(z)$ in all the zeros of $p_{n}(x)$ converges to $f(z)$ at every point interior to Γ_{ρ}, uniformly on any closed set interior to Γ_{p}. And the sequence $\left\{P_{n}(z ; f)\right\}$ diverges at every point exterior to Γ_{p} as n tends to infinity.

