7. Contributions to the Theory of Semi-groups. VI

By Kiyoshi Iséki
(Comm. by K. Kunugr, m.J.A., Jan. 12, 1957)

In this Note, we shall give some supplement remarks of my papers [1, I-V]. A proposition proved is a generalisation of a theorem by S. Schwarz [2].

By a character of semi-group $S^{*)}$ we mean a complex valued function $\chi(x)$ satisfying $\chi(a) \chi(b)=\chi(a b)$ for every a, b of S.

The set \hat{S} of all characters of S is a commutative semi-group with zero and unit. For χ, ψ of $\hat{S,}$ the product $\chi \psi$ is defined as $\chi \psi(\alpha)=\chi(\alpha) \psi(\alpha)$ for all α of S.

Let \mathfrak{M} be an ideal of S, then the set $\widehat{\mathfrak{M}}$ of all elements χ of \widehat{S} such that $\chi(x)=0$ for $x \in \mathfrak{H}$ is an ideal of \hat{S}. Clearly $\hat{\mathfrak{H}}$ is not empty and closed.

Conversely, if S is a periodic semi-group with finite numbers of idempotents, for every proper ideal $\hat{\mathfrak{N}}$ of \hat{S}, the set $\hat{\mathfrak{A}}$ of all elements x consisting of $\chi(x)=0$ for all $\chi \in \hat{\mathscr{H}}$ is non-empty and an ideal of S.

Let \mathfrak{H} be a closed ideal in S, then the ideal \mathfrak{H} is the intersection of some prime ideals \mathfrak{F}_{λ} i.e. $\mathfrak{N}=\bigcap_{\lambda} \mathfrak{F}_{\lambda}$. Therefore,

$$
\varepsilon_{\lambda}(x)= \begin{cases}0 & x \in \mathfrak{F}_{\lambda} \\ 1 & x \in S-\mathfrak{F}_{\lambda}\end{cases}
$$

are in \hat{S} and each $\varepsilon_{\lambda}(x)$ is contained in $\hat{\mathfrak{V}}$. Then we have $\hat{\mathfrak{U}}=\mathfrak{N}$. Therefore in such a semi-group S, there is a one-to-one correspondence between the closed ideals in S and the ideals of \hat{S}.

Let $\mathfrak{N}, \mathfrak{B}$ be two closed ideals and let $\mathfrak{H} \subset \mathfrak{B}$, then we have $\hat{\mathfrak{H}} \supseteq \hat{\mathfrak{B}}$. To prove $\hat{\mathfrak{U}} \supset \hat{\mathfrak{B}}$, by the Zorn lemma, we take a maximal subsemigroup M such that $M \subset \mathfrak{B}$ and $\mathfrak{N} \frown M=\phi$. By using the Zorn lemma again, we find a maximal ideal \mathfrak{M} such that $\mathfrak{H} \subset \mathfrak{M}$ and $\mathfrak{H} \frown \mathfrak{M}=\phi$. Then since \mathfrak{M} is a prime ideal, we can define a character χ such that

$$
\chi(x)= \begin{cases}1 & x \in \mathfrak{M} \\ 0 & x \in S-\mathfrak{M} .\end{cases}
$$

Then $\chi \in \hat{\mathfrak{M}}$, and, from $\chi(x)=1$ for $x \in \mathfrak{B}, \chi \in \widehat{\mathfrak{B}}$.
Thus we have the following
Proposition. In any commutative periodic semi-group having a finite number of idempotents, there is a one-to-one correspondence

[^0]between the closed ideals in S and the ideals in \hat{S}, and $\mathfrak{H} \subset \mathfrak{B}$ in S if and only if $\hat{\mathfrak{H}} \supset \hat{\mathfrak{B}}$.

References

[1] K. Iséki: Contributions to the theory of semi-groups. I-V, Proc. Japan Acad., 32, 174-175, 225-227, 323-324, 430-435, 560-561 (1956).
[2] S. Schwarz: O nekotoroi sbyazi Galois b Teorii Karakterob polugrupp, Czechoslovak Math. Jour., 4 (79), 296-313 (1954).

[^0]: *) For undefined terminologies, see my Notes [I-V].

