3. Complex Numbers with Vanishing Power Sums

By Saburô Uchiyama
Department of Mathematics, Hokkaidô University, Sapporo, Japan
(Comm. by Z. Suetuna, m.J.A., Jan. 12, 1957)

1. By $3_{m, n}$ we denote the set of systems of n complex numbers $\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ with the property

$$
s_{\nu} \equiv \sum_{j=1}^{n} z_{j}^{\nu}=0 \quad(\nu=m+1, m+2, \cdots, m+n-1)
$$

for a prescribed non-negative integer m.
In a course of their study of the theory of Diophantine approximations Vera T. Sós and P. Turán* were led to the problem of determining all the systems in $3_{m, n}$, and proved that:
1° the systems in $3_{0, n}$ are given by the zeros of an equation $z^{n}+a=0 \quad(a$ arbitrary complex);
2° the systems in $3_{1, n}$ are given by the zeros of an equation

$$
z^{n}+\frac{a}{1!} z^{n-1}+\cdots+\frac{a^{n}}{n!}=0 \quad(a \text { arbitrary complex }) ; \text { and }
$$

3° the systems in $3_{2, n}$ are formed by the zeros of an equation

$$
z^{n}+\frac{H_{1}(\lambda)}{1!} a z^{n-1}+\cdots+\frac{H_{n}(\lambda)}{n!} a^{n}=0
$$

where $H_{\nu}(t)$ stands for the ν th Hermite polynomial defined by

$$
H_{\nu}(t)=(-1)^{\nu} e^{t^{2}} \frac{d^{\nu}}{d t^{\nu}} e^{-t^{2}},
$$

λ denotes any zero of the equation $H_{n+1}(t)=0$ and a is an arbitrary complex number.

In the present note we wish to give a characterization of the systems in $3_{m, n}$ for general integer values of $m>0$.
2. We define polynomials $C_{\nu}=C_{\nu}\left(t_{1}, \cdots, t_{m}\right)(\nu=0,1,2, \cdots)$ by

$$
\begin{equation*}
\exp \left(-\sum_{\mu=1}^{m} \frac{1}{\mu} t_{\mu} x^{\mu}\right)=\sum_{\nu=0}^{\infty} \frac{C_{\nu}}{\nu!} x^{\nu}, \tag{1}
\end{equation*}
$$

that is, by

$$
C_{\nu}=\nu!\sum_{\substack{\mu_{i} \geq 0 \\ \mu_{1}+2 \mu_{2}+\cdots+m \mu_{m}=\nu}} \frac{\left(-\frac{t_{1}}{1}\right)^{\mu_{1}}\left(-\frac{t_{2}}{2}\right)^{\mu_{2}} \cdots\left(-\frac{t_{m}}{m}\right)^{\mu_{m}}}{\mu_{1}!\mu_{2}!\cdots \mu_{m}!}
$$

It is well known that the Hermite polynomials $H_{\nu}(t)(\nu=0,1,2, \cdots)$ are generated by

$$
e^{2 t x-x^{2}}=\sum_{\nu=0}^{\infty} \frac{H_{\nu}(t)}{\nu!} x^{\nu} .
$$

[^0]Thus, for $m=2$ we have

$$
C_{\nu}\left(-2 u, 2 v^{2}\right)=v^{\nu} H_{\nu}\left(\frac{u}{v}\right) \quad(\nu=0,1,2, \cdots)
$$

Now, our result can be stated as follows:
Theorem. All the systems $\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ in $3_{m, n}(m>0)$ are formed by the zeros of an equation

$$
\sum_{\nu=0}^{n} \frac{C_{\nu}\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right)}{\nu!} z^{n-\nu}=0
$$

where $\left(\lambda_{1}, \lambda_{2}, \cdots, \lambda_{m}\right)$ is any solution of the system of equations

$$
C_{\nu}\left(t_{1}, t_{2}, \cdots, t_{m}\right)=0 \quad(\nu=n+1, n+2, \cdots, n+m-1) .
$$

We note that the value of any one of the λ_{i}, λ_{1} say, is arbitrarily given. Clearly our theorem covers the results 2° and 3° due to Sós and Turán.
3. Put

$$
\prod_{j=1}^{n}\left(z-z_{j}\right)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n-1} z+a_{n}
$$

We are now going to determine the coefficients a_{1}, \cdots, a_{n} under the condition

$$
\begin{equation*}
s_{m+1}=s_{m+2}=\cdots=s_{m+n-1}=0 . \tag{2}
\end{equation*}
$$

There hold the recurrence formulae of Newton-Girard:
(3)

$$
s_{\nu}+s_{\nu-1} a_{1}+s_{\nu-2} a_{2}+\cdots+s_{1} a_{\nu-1}+\nu a_{\nu}=0
$$

for $1 \leqq \nu \leqq n$, and
(4)

$$
s_{\nu}+s_{\nu-1} a_{1}+\cdots+s_{\nu-n+1} a_{n-1}+s_{\nu-n} a_{n}=0
$$

for $\nu>n$. It follows from this that, if $s_{1}, s_{2}, \cdots, s_{n}$ are given, then $a_{1}, a_{2}, \cdots, a_{n}$ are uniquely determined. Moreover, it is not difficult to see that

$$
a_{\nu}=\sum_{\substack{\mu_{i} \geq 0 \\ \mu_{1}+2 \mu_{2}+\cdots+n \mu_{n}=\nu}} \frac{\left(-\frac{s_{1}}{1}\right)^{\mu_{1}}\left(-\frac{s_{2}}{2}\right)^{\mu_{2}} \cdots\left(-\frac{s_{n}}{n}\right)^{\mu_{n}}}{\mu_{1}!\mu_{2}!\cdots \mu_{n}!} \quad(1 \leqq \nu \leqq n),
$$

whence, putting $s_{1}=t_{1}, s_{2}=t_{2}, \cdots, s_{m}=t_{m}$ and using $s_{m+1}=s_{m+2}=\cdots$ $=s_{n+n-1}=0$, we thus obtain

$$
a_{\nu}=\frac{1}{\nu!} C_{\nu}\left(t_{1}, t_{2}, \cdots, t_{m}\right) \quad(1 \leqq \nu \leqq n)
$$

Next, we shall show that these t_{i} 's must satisfy the relations

$$
C_{n+\kappa}\left(t_{1}, t_{2}, \cdots, t_{m}\right)=0 \quad(\kappa=1,2, \cdots, m-1) .
$$

By differentiation with respect to x we get from (1)

$$
\begin{equation*}
-\sum_{\mu=1}^{m} t_{\mu} x^{\omega-1} \sum_{\nu=0}^{\infty} \frac{C_{\nu}}{\nu!} x^{\nu}=\sum_{\nu=0}^{\infty} \frac{C_{\nu+1}}{\nu!} x^{\nu} \tag{5}
\end{equation*}
$$

Put $m_{\kappa}=\min (m, n+\kappa)$ for $1 \leqq \kappa \leqq m-1$. The comparison of the coefficients of x^{n} on both sides of (5) gives

$$
\frac{C_{n+1}}{n!}=-\left(t_{1} \frac{C_{n}}{n!}+\cdots+t_{m_{1}} \frac{C_{n+m_{1}-1}}{\left(n+m_{1}-1\right)!}\right)
$$

$$
\begin{aligned}
& =-\left(t_{1} a_{n}+\cdots+t_{m_{1}} a_{n+m_{1}-1}+\cdots+s_{n} a_{1}+s_{n+1}\right) \\
& =0
\end{aligned}
$$

by (2) and (4). Thus $C_{n+1}=0$. Now suppose that $C_{n+1}=\cdots=C_{n+\kappa-1}$ $=0$. Again, by the comparison of the coefficients of $x^{n+\kappa-1}$ on both sides of (5) and using (4) we find that

$$
\begin{aligned}
\frac{C_{n+\kappa}}{(n+\kappa-1)!} & =-\left(t_{1} \frac{C_{n+\kappa-1}}{(n+\kappa-1)!}+\cdots+t_{m_{\kappa}} \frac{C_{n+m_{\kappa}-\kappa}}{\left(n+m_{\kappa}-\kappa\right)!}\right) \\
& =-\left(t_{\kappa} a_{n}+\cdots+t_{m_{\kappa}} a_{n+m_{\kappa}-\kappa}+\cdots+s_{n+\kappa-1} a_{1}+s_{n+\kappa}\right) \\
& =0
\end{aligned}
$$

whence $C_{n+\kappa}=0$, and our assertion is proved by induction.
Conversely, let $z_{1}, z_{2}, \cdots, z_{n}$ be the zeros of an equation of the type described in the theorem. Then, by a similar argument as above, we can show that the system $\left(z_{1}, z_{2}, \cdots, z_{n}\right)$ satisfies the relation (2), using (3), (4) and (5). This concludes the proof of our theorem.

[^0]: *) Vera T. Sós and P. Turán: On some new theorems in the theory of Diophantine approximations, Acta Math. Acad. Sci. Hungar., 6, 241-255 (1955).

