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1. By 3, we denote the set of systems of n complex numbers
(z, z,..-, z) with the property

s z]--0 (v--m+1, m+2,. .,
j=l

for a prescribed non-negative integer m.
In a course of their study of the theory of Diophantine ap-

proximations Vera T. SSs and P. Turin*) were led to the problem of
determining all the systems in ,, and proved that:
1 the systems in 0, are given by the zeros of an equation

z"+a=0 (a arbitrary complex);
2 the systems in 3, are given by the zeros of an equation

Zn-1z+-1 +... +---0 (a arbitrary complex); and

3 the systems in 3:, are formed by the zeros of an equation

zE+fl() az_+... + H() a_O,

where H(t) stands for the ,th Hermite polynomial defined by

H (t)
dt

denotes any zero of the equation H+(t)=O and a is an arbitrary
complex number.

In the present note we wish to give a characterization of the
systems in , for general integer values of m

2. We define polynomials C=C(t,..., t) (=0, 1,2,---) by

(1) exp(-- ltx’)--x,C=i =0

that is, by

2/

I+ 21Z2 + q-=
It is well known that .the Hermite polynomials H(t) (, =0, 1, 2,.-.)

are generated by

*) Vera T. SSs and P. Turin" On some new theorems in the theory of Diophantine
approximations, Acta Math. Acad. Sci. Hungar., 6, 241-255 (1955).
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Thus, for m--2 we have

(u) (--0, 1, 2,. .).C(-- 2u, 2v2) vH -Now, our result can be stated as follows:
Theorem. All the systems (z, z.,..., zn) in ,n (re>O) are formed

by the zeros of an equation

a(,,...,) z__o,
=0

where (,,...,) is any solution of the system of equations
C(t,t:,..., )-0 (v-n+1, n+2,..., n+m--1).

We note that the value of any one of the 2, 2 say, is arbitrarily
given. Clearly our theorem covers the results 2 and 3 due to SSs
and Turfin.

3. Put

(Z--Z)--znWazn-+ +a_z+a,.
=1

We are now going to determine the coefficients a,..-, a under the
condition
(2) s+-s+ S+n_--O.

There hold the recurrence formulae of Newton-Girard:
( 8 s+s_a+s_a+... +sa_+,a-0
for l,n, and
( 4 ) s.+s_a +... +s_+a_+s_a-O
for , > n. It follows from this that, if s, s:,. ., s= are given, then
a,a2,...,a are uniquely determined. Moreover, it is not difficult
to see that

a (1, n),
1+2+.

whence, putting s-- t, s=t, ., s-t and using s,+--s+-.=s+,_-0, we thus obtain
1a=C(t,, t,..., t) (1, n).

Next, we shall show that these t’s must satisfy the relations
Cn+(t,, t, ., t,)--O (=1, 2,..., --).

By differentiation with respect to x we get from (1)

Put m-min(m,n+) for 1m-1. The comparison of the
coefficients of x" on both sides of (5) gives

[ n+’’" +t
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(ta+... +tan+_ -" --sa+sn+ )
--0

by (2) and (4). Thus C/=0. Now suppose that Cn+-...-C+,_
=0. Again, by the comparison of the coefficients of x+- on both
sides of (5) and using (4) we find that

C+. =--(t C+- + +t C+.- )(n+--l)l (n+--l)] (nm)l.
=--(tan+...+ta+,_+... +Sn+_a
0

whence C+=O, and our assertion is proved by induction.
Conversely, let z,z:,...,z, be the zeros of an equation of the

type described in the theorem. Then, by a similar argument as above,
we can show that the system (z, z,..., z.) satisfies the relation (2),
using (3), (4) and (5). This concludes the proof of our theorem.


