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23. Divergent Integrals as Viewed from the Theory
of Functional Analysis. I

By Tadashige ISHIHARA
(Comm. by K. KUNUGI, M.J.A., Feb. 1.2, 1957)

1. Introduction. Let the complex valued function f(z,) be
defined for a real number , (ab) and for a complex number
z on a domain D and also on another domain D. We assume that the

integral f(2, )d2 eonverges for e D and diverges for D. We

denote the convergent integral for D by f().
Now in many branches of analysis, it is often necessary or con-

venient to use a function f*() on eD which in some senses cor-
responds to f() on e D. Nor example, (i) when f() is analytic
on D, the analytic extension in D of f() may be taken as f*(),
(ii) when f(, ) is a solution for D of some differential or integral
equations which eontain as a parameter, the solution for e D may
be taken as f*(). To derive the functions f*() in such eases, we
have many classical methods: ehangings of the contour of integral,
or various methods of summation, or other limiting processes.

In this and the following papers we always view such divergent
integrals from the theory of functional analysis. We construct a
functional space whose elements for example are the funetions
(, -) defined on D or on both D and D having suitable properties
there (here and - are respectively the real part and the imaginary
part of ).

Now the mapping 2 - f(,, ) defines a mapping from <, _<_ b
to ’, where ’ is a dual space of . We regard the divergent

integral f(,)d for D as the integral in ’. If it eonverges

weakly or strongly we can examine whether the functional f*()
defines a function or not and we can investigate its properties also.

We consider particularly about the following type of divergent
integrals (1), though, of course, the similar method will be able to be
adopted for other sorts of kernels, dimensions of , or intervals of
the integration by seleeting suitable functional spaces .

This type of integrals relates to some of the most important parts
of classical analysis, i.e. the Laplace transform, the power series de-
velopment, the analytic continuation, some sorts of aproximations,
and some differential or integral equations (see 2).

In this paper we show some sufficient eonditions for these kernels,
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which will be used in the following papers. We also give some
examples from the Laplace transform in connection with the problem
of analytic continuation. However the detailed discussion of many
other applications will be done in the following papers.

We consider the following divergent integrals

v*(k)- exp (iks)v(, , s) ds ( 1

where k-a+ir. We denote the domain <a< +, r r r: in
the plane RR by D. v(a, r, s) is defined on D and satisfies the
condition (v) or (v)’ (see 4, 5).

2. Relations to other problems.
( 1 ) Relation to the Laplace transform. When v is dependent

only on s, our integral is a Laplace integral. In this case, the con-
dition (v) or (v)’ is not necessary. Indeed, as remarked in 5, even
if v(s) is not a function we can apply our method for an arbitrary
distribution and in any strip D on RoR.

( 2 ) Relations to Borel’s integral. Let f(z)--7=oaz be analytic
when Izl r. Then (z)=7__oaz/n! is an integral function. We

put f()= e-(t)dt and it holds f()--f() when 11< r. f()

represents an analytie function in a more extended region (i.e. in the
Borel’s polygon) than the circle I1< r.

We put (t)=e"v(t). If v(t) satisfies (v) or (v), our methods
are valid outside the polygon. So in this ease we have more detailed
knowledge about the analytic extension of the power series than
obtained by Borel’s method.

(3) We consider the following singular integral equations of
Volterra’s type containing a parameter k.

u(k,r)-Uo(k,r)+ exp [ik(s-r)} V(k,r,s)u(k,s)ds ( 2 )

Formal solution is expressed using the resolvent F

u(k, r)-Uo(k, r)+fI(k, r, S)Uo(k, s)ds ( a )

where
F(k, r, s)=exp [ik(s--r)} w(k, r, s).

w(k, r, s) is determined by V(k, r, s) and if w(k, r, S)Uo(k, s) satisfies
our condition (v)or (v)’, we can define the functional solution for
k e D where the formal solution (3) diverges in a proper sense. We
can utilize this functional solution (a) to obtain the proper solution,
(b) to examine an analytic continuation in the domain D from the
domain D where a proper solution u(k, r) is regular, (c) to examine
a solution for k e D of the differential equation L.k, u=0 which is
equivalent to the integral equation (2) for k e D.
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( 4 ) Other related problems.
(a) To investigate a solution of differential equation outside

the circle of convergence when we solve it by the power-series expan-
sions, or by other approximations.

(b) To investigate directly properties of a function which have
been examined (sometimes step by step) by many sorts of methods of
summation.

(c) To extend the method of solving differential or integral
equations using Laplace transformation, or to extend other applications
of Laplace transform.

5 ) Remark. We mentioned hitherto the way in which we regard
f(,,z) as a functional (e ’(, )) having a parameter , but it is :also
possible in some cases to regard f(,,z) as a functional ( (P’())having
a parameter z (see 7). This is often available when a divergence
of integral causes from a singularity of f(,z) at a finite point

0(a 0 b).
:. The space (P. We take the functional space )x(r) defined

by L. Schwartz [1 whose elements have carriers in the compact set
K=[r, r:, and denote it simply by )(,-). We take on the other hand
the functional space Z(a) used by Gelfand-Silov [2 or Ehrenpreis [3].
We take the biprojective tensor product [4 (,-))Z(a) of these two
spaces, and denote it by (P. The space (P has the following properties.

1 P--Z(a) (r), i.e. (P is equal to the projective tensor product
[4].

2 Let />0; by K we denote the closed interval in Ro, center
at the origin, and length 21. By . we denote the space of infinitely
differentiable functions on R(a) which vanish outside K. By da, we

denote the usual measure on R, divided by l/2r). For any function

f in ) we define its Fourier transform F:(f) by F(z)--.;f()e-zd.
It is known that F is an entire function of exponential type which
is rapidly decreasing on R. If we denote the functional space of F
by Dr(a), then we can see that Z(a) is the inductive limit of Dr(a):

U
3 The space () is dense in the space G() in the topology of

2. ( means the space defined by L. Schwartz [1].) Hence the space
Z(a) is also dense in the space 3(a) in the topology of 3.

4 Both the spaces (a) and Z() are reflexive.
5 For any element d’ e ’ and an element (p (P, we can naturally

make correspond an element (d’,cp} of Z such that (d’,(p}== (d’,
p(r)}(p(a) for cp=]7__q(a)o(r). The element (d’,cp} is uniquely
determined by p independently of the expression of (p (p , q(a)p(r).
Moreover the mapping p-->(d’, o} from P(a,r) to Z(a) is continuous.
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Similarly for any element z’ e Z’, and for any element qeq, it holds
(z’, q,(), and the mapping q-->(z’, c} from (P(a, ) to .() is
continuous.

6 We take specially Dirac’s measure at r,o as d’ in the
property 5. Then we see o(a, r0) e Z(a).

Similarly taking Dirac’s measure at a as z’ we see o(a, r)e (r).
Thus we see hat any element of q is a function q(a, r) such that
for a fixed r, o(a, r) belongs to Z(a) and for a fixed a, q(a, r) belongs
to

7 Hitherto we have denoted simply by (r) the space
where K-(rl, re). For a moment, we use the notation t(r) and denote
[.J(r) by )(r) as usual. Now we can see the following inclusion
relation.

(R) (R)
where (a, ) means the space given by L. Schwartz on the domain

Ro R. We can see this relation using the property Z(a)( ()--
Z(a))(r). On the other hand Z(a)(),(r) is dense (in q topology)
in (a)() hence is dense in (a, ). So we can see Z()()()
is dense in q topology in (, r). So for any qe ,(, r) there exists

a sequence [c(, r)} such that c e Z(a) (R) (r) and q converges to

c in the topology g.
Especially for a o which belongs to (a, r) where L means a

compact set (rrr,6aa.) in RR, we can select such a
sequence [o(, r)} particularly from the space

4. The condition (v) and the convergence.
The condition (v) is the following:

(1) v(a, r,s) is a continuous function of 3 variables a,r,s, on

(2) For any oe, vq belongs to the space

(3) For any fixed q(e) and fixed -, after 3 property 6
q(a,r)eDt(a). So if v satisfies above condition (2), there exists a
positive number l’ such that vqe D,(a). Now we demand that

(3.1) there exists sup l’ for 0 s, and
(3.2) for any fixed q and r and any So, there exists a positive

number M such that v(, r, s)c(a, r) <M for 0 s< So. (M is dependent
on So and is independent of .)

Theorem 1. If the function v in the integral (1) satisfies the
condition (v), then for any q e the integral (1) is convergent.

Proof. We put

vl(a, s)-fexp (-rs)v(a, r, T)d-,
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and

v:(s, t)-f+exp (ias)v(e, t)da.

Using the mean value theorem of integrations we can see that
v(a,s)e D,() where is common for all s. So it follows that v:(s, t)
,(s) where can be chosen common for all s.
We can see also using Arzel’s theorem that v:(s, t) is a continuous

function of 2 variables (s, t). So the integral

(v*, o) v(s, s)ds v.(s, s)ds exists.. Continuity. The condition (v)’ for the continuity of v* on (P:

(1) The same as the first one of the conditions (v).
(2) v is a multiplicator of , i.e. for any pe q), vo belongs to

and moreover the mapping from to 09, cp--> v(p is continuous.
(3) The continuous mapping (p-->vp is uniform in any finite

interval 0<s< So.
Theorem 2. If v in the integration (1) satisfies the condition

(v)’, v* is a continuous linear functional on
Proof. 1 We can see that if a sequence [cp(a,r)} of con-

verges to 0 in the space (P, p(a, ,-) converges to 0 for a fixed - in
the space Z(e) uniformly in the closed interval [r, r:_. This causes
from the fact that the set of Dirac’s measure 80 at r0, (r<,.0r:)
is an equicontinuous set in )’.

So it follows that there exists a positive number such that
(p(,)D(a) for any integer 3" and any (__<__<). (The same
holds true for converging filter {p}.)

2 Since the set [exp(i.s)lO<__s} is an equicontinuous set in
Z’(a) and the set [exp(-rt)lO<__tl is an equicontinuous set in
(,’r<r:) and v satisfies (v)’ (3), we can see the following:

Putting v(s, t, r)- (exp (is))exp (--t), v(, r, r) x (p(, )},
m(s, t, r) converges to 0 uniformly for s (0 __<s), t (0 < t_<_ 1), and r
(ot<__t).

8 From 1 and 2 we can easily see

Examining the above proofs we can see easily the truth of the
following theorem:

Theorem 3. In the case v(6, ., s)=.___ u(r, )w(s), the conditions
(v) and (v)’ can be weakened as follows:
() ( 1 w(s) is locally summable.

2 For any o e it follows that uq e .
()’ 1 w(s) is locally summable.
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(2) uj is a multiplicator of
Corollary. If v(s) is locally summable, its Laplace transform

f(z)- e-SZv(s)ds (in our sense) exists on the whole plane.

Remark. We have hitherto considered only about the function
v(a, r, s), but our treatment can be easily extended to the case when
v=,u(r,r)w where w is a distribution on (s). The detailed
discussion about this extension, however, will be done in the following
paper.

Particularly in the case v is a distribution on (s), v* represents
its Laplace transform. So we can define Laplace transform of an
arbitrary distribution on the whole plane.
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