22. A Note on the Singular Homotopy Type of Spaces

By Yoshiro INOUE

(Comm. by K. KUNUGI, M.J.A., Feb. 12, 1957)

Our purpose of this paper is to generalize a result of H. Suzuki [4] concerning the homotopy type of a space and its loop space.

I. Let M be a c.s.s. complex (complete semi-simplicial complex), Π be an abelian group, and $n \ge 2$ be an integer. Let $\Re^{n+1} \in H^{n+1}(M, \Pi)$ be a cohomology class, and $X = K(M, \Pi; \Re^{n+1})$ be the c.s.s. complex defined in the paper [2], §1. Let G be an abelian group. Denote by A the normalized cochain group $C_N^*(X, G)$ of X. As was shown in the paper [2], §5, there is a filtration $A = \smile A^r$, such that the term $E_2^{p,q}$ of the spectral sequence $\{E_r\}$ derived from this filtration is canonically isomorphic with $H^p(M, H^q(\Pi, n; G))$. In the sequel, we assume that M operates trivially on Π and G. Let $p_r^* : H^r(M, G) \rightarrow$ $H^r(A^1, G)$ be the homomorphism induced by the projection $p: X \rightarrow M$ and let $\delta_{r-1} : H^{r-1}(\Pi, n; G) \rightarrow H^r(A^1, G)$ be the coboundary homomorphism. Then, the transgression $t_{r-1}^* : \delta_{r-1}^{-1}$ (image $p_r^*) \rightarrow H^r(M, G)/(\text{kernel } p_r^*)$ is defined by $t_{r-1}^* = p_r^{*-1}\delta_{r-1}$. Especially, t_n^* is a homomorphism of $H^n(\Pi, n; G)$ [3].

Lemma 1. Let I be the identity automorphism \in Hom (Π, Π) , and $t_n^*: Hom (\Pi, \Pi) \approx H^n(\Pi, n; \Pi) \rightarrow H^{n+1}(M, \Pi)$ be the transgression. Then, $\Re^{n+1} = t_n^*(I).$

II. Let X be a simply connected space, E the space of paths in X starting at a fixed point $x_0 \in X$, and \mathcal{Q} be the loop space $\subseteq E$. Let $p_r^*: H^r(X, G) \to H^r(E, \mathcal{Q}; G)$ be induced by the projection $p: E \to X$ and $\delta_r: H^r(\mathcal{Q}, G) \to H^{r+1}(E, \mathcal{Q}; G)$ be the coboundary homomorphism. Then, the suspension $S_r: H^{r+1}(X, G) \to H^r(\mathcal{Q}, G)$ is defined by $S_r = \delta_r^{-1} p_r^*$. If X is p-connected, S_r is an isomorphism (into or onto) for $0 < r < 2 \times p$.

Let X be a simply connected space, $X_{(n)}$ be the *n*-combined space of X (§1, [1]). Since $X_{(n)}$ is obtained by attaching cells to X, we may assume that

 $X \subseteq \cdots \subseteq X_{(n+1)} \subseteq X_{(n)} \subseteq \cdots$.

Furthermore, we may assume that $X_{(n+1)}$ is a fibre space over $X_{(n)}$.¹⁾ The minimal complex $M_{(n+1)}$ of $X_{(n+1)}$ is simplicial isomorphic to the c.s.s. complex $K(M_{(n)}, \pi_{n+1}(X); \Re^{n+2}(X))$ (§ 2, [1]).

The loop space $\Omega(X_{(n)})$ of $X_{(n)}$ is the (n-1)-combined space of

¹⁾ There is a fibre space E over $X_{(n)}$ such that E has the same homotopy type with $X_{(n+1)}$ and the projection $p: E \to X_{(n)}$ is equivalent to the inclusion $X_{(n+1)} \subseteq X_{(n)}$ [1].

the loop space $\mathcal{Q}(X)$ of X.

Lemma 2. In the diagram:

$$\begin{split} H^n(\pi_n(\mathcal{Q}(X_{(n)})), n; G) & \stackrel{\iota^*}{\longrightarrow} H^{n+1}(\mathcal{Q}(X_{(n)}); G) \\ & \uparrow \overline{s} & \uparrow s \\ H^{n+1}(\pi_{n+1}(X), n+1; G) & \stackrel{\iota^*}{\longrightarrow} H^{n+2}(X_{(n)}; G), \end{split}$$

the relation

No. 2]

$$t^*\overline{S} = -St^*$$

holds, where S, \overline{S}^{2} are the suspensions, and $t^*, \overline{t^*}$ are the transgressions.

III. Let X be simply connected, $\mathcal{Q}(X)$ be the loop space of X and $\mathfrak{R}^n, \overline{\mathfrak{R}}^n$ be the *n*-generalized Eilenberg-MacLane invariants of X and $\mathcal{Q}(X)$, respectively (§ 3, [2]). Let $S_{n+1}: H^{n+2}(X_{(n)}, \pi_{n+1}(X)) \rightarrow$ $H^{n+1}(\mathcal{Q}(X_{(n)}), \pi_{n+1}(X))$ be the suspension. Then, by Lemmas 1 and 2, we have

$$S_{n+1}\mathfrak{R}^{n+2} = -\,\overline{\mathfrak{R}}^{n+1}$$

By this relation, the following theorem readily follows from Theorem 4.2.

Theorem. Let X and Y be two p-connected spaces $(p \ge 1)$ and let q be an integer such that $p \le q \le 2p-1$. If $\Omega(X)$ and $\Omega(Y)$ have the same singular q-homotopy type, then X and Y have the same singular (q+1)-homotopy type.

Corollary. Let X and Y be two A_n^{n-1} polyhedra $(n \ge 1)$. If $\mathcal{Q}(X)$ and $\mathcal{Q}(Y)$ have the same singular (2n-2)-homotopy type, then X and Y have the same homotopy type.

References

- H. Cartan et J. P. Serre: Espaces fibres et groupes d'homotopie I, C. R. Acad. Sci., Paris, 288-290 (1952).
- [2] Y. Inoue: A complete system of invariants of singular homotopy type (to appear).
- [3] J. P. Serre: Homologie singulière des espaces fibrés. Applications, Ann. Math., 54, 425-505 (1951).
- [4] H. Suzuki: On the Eilenberg-MacLane invariants of loop spaces, Jour. Math. Soc. Japan, 8, 93-101 (1956).

²⁾ Let $p: X_{(n+1)} \to X_{(n)}$ be the projection, and $F = p^{-1}(x_0)$ be a fibre. Then, \overline{S} is the suspension in the fibre space (E_F, q, F) , where E_F is a space of paths in F starting at a fixed point $\in F$.