19. On LCⁿ Metric Spaces

By Yukihiro Kodama

Department of Mathematics, National Defense Academy (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1957)

1. Introduction. A topological space X is called an LC^n space [7, p. 79] if for any point x of X and any neighborhood U of x there exists a neighborhood V of x such that any continuous mapping $g:s^i \to V$, $i=0, 1, \dots, n$, has an extension $\tilde{g}: E^{i+1} \to U$, where S^i is an *i*-dimensional sphere and E^{i+1} is an (i+1)-dimensional element with the boundary S^i . A topological space X is called a C^n space [7, p. 78] if any continuous mapping $g:s^i \to X$, $i=0, 1, \dots, n$, has an extension $\tilde{g}: E^{i+1} \to X$. A topological space X is called an *n*-ES (resp. *n*-NES) [6] for metric spaces if, whenever Y is a metric space, B is a closed subset of Y such that dim $(Y-B) \leq n^{10}$ and g is any continuous mapping B to X, there exists an extension \tilde{g} of g from Y (resp. some neighborhood of B in Y) to X. A metric space X is called an *n*-AR (resp. *n*-ANR) for metric spaces if, whenever Y is a metric space I is a metric space in which X is closed and dim $(Y-X) \leq n$, because X is called an for [1, 1] of Y (resp. some neighborhood of X in Y).

In this paper, we shall prove the following theorems concerning LC^n spaces:

Theorem 1. An *n*-dimensional metric space¹⁾ is an ANR for metric spaces if and only if it is an LC^n space.

Theorem 2. An *n*-dimensional LC^n metric space X is an *n*-ES for metric spaces if and only if $\pi_i(X)=0$, $i=0, 1, \dots, n-1$, and $\pi_n(X)$ is 0 or the weak product of infinite cyclic groups, where $\pi_j(X)$ is the *j*-dimensional homotopy group of X.

Theorem 3. For a metric space X the following conditions are equivalent:

i) X is an LC^n space.

ii) X is an (n+1)-NES for metric spaces.

iii) X is an (n+1)-ANR for metric spaces.

Theorem 4. If X is an LC^n metric space, for each integer i=0, $1, \dots, n$, the following conditions are equivalent:

i) X is a C^i space.

ii) X is an (i+1)-ES for metric spaces.

iii) X is an (i+1)-AR for metric spaces.

S. Lefschetz [7] proved Theorem 1 in case X is a compact

¹⁾ In this paper, we understand by "dimension" the covering dimension. (For example, see [8, p. 350].)

metric space. C. Kuratowski [6] proved Theorems 3 and 4 in case X is a separable metric space. We shall show that these theorems hold in case X is non-separable, too.

2. Proofs of the theorems. (1) The proof of Theorem 1. Since an ANR for metric spaces is an LC^i space for each integer *i*, the "only if" part of Theorem 1 is obvious. To prove the "if" part, by [3, (1.4), p. 105], it is sufficient to show that for any positive number ε there exist continuous mappings $\phi: X \to K$, $\psi: K \to X$ such that the mapping $\psi \phi: X \to X$ is ε -homotopic²⁾ to the identity mapping, where K is a Whitehead complex [2, p. 516].

We shall say that an open covering $\mathfrak{U} = \{U_a\}$ of X has the LC^n property with respect to an open covering $\mathfrak{B} = \{V_\beta\}$ of X if for each U_a there exists an element V_β such that any continuous mapping $g: s^i \to U_a, i=0, 1, \cdots, n$, has an extension $\tilde{g}: E^{i+1} \to V_\beta$. For an open covering $\mathfrak{U} = \{U_a\}$ of X, denote by SU the open covering $\{St(U_a, \mathfrak{U})\},\$ where $St(U_a, \mathfrak{U}) = \bigcup \{U_r \mid U_r \cap U_a \neq \phi, U_r \in \mathfrak{U}\}.$

We construct a sequence of open coverings $\{\mathfrak{B}_k, \mathfrak{U}_j^i, k=0, 1, 2, \cdots, i=1, 2, \cdots, n \text{ and } j=n+1, n+2, \cdots\}$ of X such that

1) $S\mathfrak{V}_k$ has the property LC^n with respect to \mathfrak{V}_{k-1} , $k=1, 2, \dots, n$;

2) $S\mathfrak{B}_j$ has the property LC^n with respect to \mathfrak{U}_j^n , $j=n+1, n+2, \ldots;$

3) SU_{j+1}^1 has the property LC^n with respect to \mathfrak{B}_j , $j=n, n+1, \ldots;$

4) $S\mathbb{U}_{j}^{i}$ has the property LC^{n} with respect to \mathbb{U}_{j}^{i-1} , $i=2, 3, \dots, n$ and $j=n+1, n+2, \dots;$

5) \mathfrak{B}_k is a locally finite covering whose order $\leq n+1$ and the diameter of each element of $\mathfrak{B}_k < \min(\varepsilon/3, 1/2(k+1))$.

Next, we construct the following open covering of the product space Y of X and the open interval (0, 1). Take a point (x, t) of Y. Suppose $\frac{1}{i} < t \leq \frac{1}{i-1}$ or $\frac{1}{i} < 1-t \leq \frac{1}{i-1}$, $i=3,4,\cdots$. If $i \leq n+1$, we select fixed one element V^{n+1} of \mathfrak{B}_{n+1} containing x. If i > n+1, we select fixed one element V^i of \mathfrak{B}_i containing x. Put $\eta_x^i = \rho(x, FV^i)$, where ρ is metric in X and FV means the frontier of V. Denote by U(x, t) the spherical neighborhood of (x, t) in Y with the center (x, t) and the radius η_x^i . Since dim Y=n+1, there exists an open covering \mathfrak{W} of Y such that

1) \mathfrak{W} is a locally finite and star refinement of $\{U(x,t) | (x,t) \in Y\};$

2) the nerve M of \mathfrak{W} is the (n+1)-dimensional Whitehead complex.

²⁾ Two continuous mappings $f_0, f_1: X \to Y$ are called ε -homotopic if there exists a continuous mapping H from $X \times I$ to Y such that the diameter of $H(x \times I) \leq \varepsilon$ for each point x of X and $H|X \times 0 = f_0$, $H|X \times 1 = f_1$.

mapping $f: X \times I \to \Pi$ [4, (3.1)]. Put $F = X \times \left[\frac{1}{n+1}, \frac{n}{n+1}\right]$, $F_0 = X \times \left[0, \frac{1}{2}\right] - \bigcup \{U(x, t) \mid U(x, t) \frown F \neq \phi\}$ and $F_1 = X \times \left[\frac{1}{2}, 1\right] - \bigcup \{U(x, t) \mid U(x, t) \frown F \neq \phi\}$. Denote by M_i , i=0, 1, the subcomplex of M spanned by all vertexes $\{w_a\}$ of M such that $f^{-1}(w_a) \frown F_i \neq \phi$. Put $L_i = X \times \{i\} \bigcup M_i$, i=0, 1. Denote by L_i^j , i=0, 1 and $j=0, 1, \dots, n+1$, the set $X \times \{i\} \bigcup$ the j-section of M_i .

We shall construct a continuous mapping $H_0: L_0 \smile L_1 \rightarrow X$ as follows. Put $H_0(x,i)=x$, i=0,1. Take a vertex w of L_i , i=0,1. Select a fixed point (x, t) of Y such that f(x, t) = w. Then we have $t < \frac{1}{n+1}$ or $1-t < \frac{1}{n+1}$. Put $H_0(w) = x$. By [4, (3.1)], H_0 is continuous. Let $\overline{w_0w_1}$ be a 1-simplex of L_i . If we denote element of \mathfrak{W} corresponding to v_j by $W_j, j=0, 1$, then $W_0 \frown W_1 \neq \phi$. Therefore, $W_1 \subset St(W_0, \mathfrak{B})$. Since \mathfrak{W} is a star refinement of $\{U(x,t)\}$, there exists U(x,t) containing $St(W_0, \mathfrak{W})$. Let τ be the projection $X \times I \rightarrow X$. There exists the largest integer s such that $\tau(U(x,t)) \subset V_a^s$ for $V_a^s \in \mathfrak{B}_s$. Then s < n+1. If $f(x_0, t_0) = w_0$ and $f(x_1, t_1) = w_1$, we have $x_0 \smile x_1 \subset V_a^s$. Since $S\mathfrak{B}_s$ has the property LC^n with respect to \mathbb{U}_s^n , we have a continuous mapping μ of w_0w_1 into an element U_s^n of \mathfrak{U}_s^n such that $\mu|w_0 \bigtriangledown w_1 = H|w_0 \smile w_1$. Define H on $\overline{w_0w_1}$ by $H_0(y) = \mu(y)$, $y \in \overline{w_0w_1}$. Thus we have a continuous mapping $H: L_0^1 \hookrightarrow L_1^1 \to X$. Take a 2-simplex $\overline{w_0 w_1 w_2}$. By the construction of H_0 , there exist $U_{s_1}^n$, $U_{s_2}^n$, $U_{s_3}^n$ such that $H(\overline{w_0w_1}) \subset U_{s_1}^n$, $H(\overline{w_1w_2}) \subset U_{s_1}^n$ $U_{s_2}^n$, $H(\overline{w_2w_0}) \subset U_{s_3}^n$. Put $s = \min(s_1, s_2, s_3)$. Since $\bigcap_{i=1}^s U_{s_i}^n \neq \phi$ and $S \mathbb{U}_s^n$ has the property LC^n with respect to \mathbb{U}_s^{n-1} . We have an extension of H_0 from $w_0 w_1 w_2$ into an element U_s^{n-1} of \mathfrak{U}_s^{n-1} . Thus we have a continuous mapping $H_0: L_0^2 \smile L_1^2 \rightarrow X$. By repeated application of this process, we have $H_0: L_0 \hookrightarrow L_1 \to X$.

Let K be the nerve of \mathfrak{V}_{n+1} with Whitehead's topology and let ϕ be a canonical mapping of X into K. By a similar way as in the above paragraph, we can construct a continuous mapping ψ of K into X such that for each simplex s of K and for each point x of X there exist elements U and U' of \mathfrak{V}_n such that $\psi(s) \subset U$ and $x \smile \psi \phi(x) \subset U'$. Define $H_1: L_0 \smile L_1 \rightarrow X$ by $H_1 | L_0 = H_0 | L_0$ and $H_1 | L_1 = \psi \phi H_0 | L_1$. Then there exists an element of \mathfrak{V}_n containing $H_1(s)$ for each s of $L_0 \smile L_1$. Denote by M^j the j-section of $M, j=0, 1, \cdots, n+1$. Take a vertex w of $M^0 - \bigcup_{i=0}^{1} L_i$. Select a point x of W, where W is the element of \mathfrak{W} corresponding to w. Define $H_2: L_0 \smile L_1 \smile M^0 \rightarrow X$ by putting $H_2 | L_0 \smile L_1 = H_1$ and $H_2(w) = x$ for $w \in M^0 - L_0 \smile L_1$. By the

Y. KODAMA

[Vol. 33,

construction of coverings \mathfrak{B}_k , $k=0, 1, \cdots, n$, and the definition of H_2 , H_2 is extended to a continuous mapping (we use the same letter H_2) of II into X such that for each simplex s there exists an element of \mathfrak{B}_0 containing $H_2(s)$. Define $H: X \times I \to X$ by $H=H_2f$. Take a point x of X. Let K_1 be the nerve of the covering $\mathfrak{W}_{\frown}(x \times I)$ which we can consider as a subcomplex of M. Then $f(x \times I) \subset x \times (0 \subset 1) \subset K_1$. By the construction of H_2 , there exists an element V_0 of \mathfrak{B}_0 such that $H_2(K_1) \subset St(V_0, \mathfrak{B}_0)$. But the diameter of $St(V_0, \mathfrak{B}_0) < \frac{\varepsilon}{3} \cdot 3 = \varepsilon$. Therefore, the homotopy H is an ε -homotopy. This completes the proof of Theorem 1.

(2) The proof of Theorem 2. The "if" part is a consequence of Theorem 4 which we shall prove in the next section. To prove the "only if" part, by the same way as in the proof of Theorem 1, we can construct an *n*-dimensional complex *P* and mappings $\phi:(X, x_0)$ $\rightarrow(P, p_0), \ \psi:(P, p_0) \rightarrow (X, x_0)$ such that $\psi \phi \simeq 1$ rel (x_0, x_0) in *X*, where x_0 is a point of *X* and p_0 is a vertex of *P*. Since *X* is an *n*-ES, we have $\pi_i(X, x_0) = 0, \ i < n$. By the well-known Hurewicz's theorem, we have $\pi_n(X, x_0) \approx H_n(X, x_0)$, where $H_n(X, x_0)$ is the *n*-dimensional homology group of (X, x_0) with the additive group of integers as coefficients. Since $H_n(X, x_0)$ is a direct factor of $H_n(P, p_0)$ and *P* is the *n*-dimensional complex, $H_n(X, x_0)$ is 0 or the weak product of infinite cyclic groups. This completes the proof.

(3) The proofs of Theorems 3 and 4. By a similar way as [5, Théorème 2, p. 266] and [6, Théorème 1, p. 273], Theorem 4 is a consequence of the following proposition:

Proposition 1. If X is a (non-separable) metric space, there exists a metric space Y such that

i) X is a closed subset of Y;

ii) Y-X is an infinite complex with the metric topology [2];

iii) whenever Z is a metric space, A is a closed subset of Z and g is a continuous mapping from A to X, g has an extension \tilde{g} from Z to Y.

Proof. According to [9, p. 186], X can be imbedded in a convex subset S of a normed vector space as a closed subset. For each point s of S-X, denote by S(s) the spherical neighborhood of s in S with the center s and the radius $\frac{1}{2}\rho(s, X)$, where ρ is metric in S. There exists an open covering $\mathbb{I} = \{U_{\alpha} \mid \alpha \in \Omega\}$ of S-X such that

1) It is a locally finite star refinement of the covering $\{S(s) \mid s \in S - X\}$;

2) It is irreducible, that is, for each α , there exists a point s_{α} of U_{α} which does not belong to U_{β} for any β of Ω , $\beta \neq \alpha$.

Consider the product space $C = S \times \prod_{\alpha \in \Omega} I_{\alpha}$, where I_{α} is the half open

interval $[0, \infty)$ with the usual topology. Any point of C is represented by $\{s \mid s \in S; k_{\alpha} \mid k_{\alpha} \in I_{\alpha}, \alpha \in \Omega\}$. We identify S with the subset $\{s; k_{\alpha} = 0 \mid i \leq n\}$ $\alpha \in \Omega$ of C. Denote by y_{α} the point $\{s_{\alpha}; k_{\alpha} = \rho(s_{\alpha}, X) \text{ and } k_{\beta} = 0$ for $\beta \neq \alpha, \ \beta \in \Omega$ of C. If $\bigcap_{i=0}^{n} U_{a_i} \neq \phi$, there exists a spherical neighborhood S(s) such that $\bigcup_{i=0}^{n} U_{a_i} \subset S(s)$. Therefore, we can construct a simplex $s(\alpha_0, \dots, \alpha_n)$ in C with the vertexes $y_{\alpha_0}, \dots, y_{\alpha_n}$. Denote by M the subset $\bigcup \{s(\alpha_0, \dots, \alpha_n) \mid (\alpha_0, \dots, \alpha_n) \text{ rangs over all finite com-}$ binations of elements of \mathcal{Q} such that $\bigcap_{i=0}^{n} U_{a_i} \neq \phi$ of C. Put $Y = X \smile M$. Let y_i , i=1, 2, be two points of Y such that $y_i \in s(\alpha_0^i, \dots, \alpha_{n_i}^i)$. Then y_i , i=1, 2, are contained in a metric subset $L\!=\!S\! imes\!\prod_{i=0}^1\,\prod_{j=0}^{n_i}\,I_{a_j^i}$ of X with the usual metric of the product space. If we define a metric $\tilde{\rho}(y_1, y_2)$ in Y by a metric between y_1 and y_2 in L, Y is a metric subspace of C. Let ϕ be a canonical mapping of S-X to M. Define a mapping $\widetilde{\phi}: S \to Y$ by $\widetilde{\phi}|S - X = \phi$ and $\widetilde{\phi}|X =$ the identity mapping. If a sequence $\{s_i, i=1, 2, \cdots\}$ of points of S-X has a limit point x in X and $y_i =$ $\widetilde{\phi}(s_i) = \{ \widetilde{s}_i \mid \widetilde{s}_i \in S; k_a(i), \alpha \in \mathcal{Q}: i = 1, 2, \cdots \}, \text{ the sequence } \{ \widetilde{s}_i \} \text{ has the limit}$ point x. Let $s(\alpha_0^i, \dots, \alpha_{n_i}^i)$, $i=1, 2, \dots$, the simplex of M containing y_i . Then we have $\tilde{
ho}(y_i, \tilde{s}_i) \leq \max \{k_{a_i^i}, j=0, \cdots, n_i\}, i=1, 2, \cdots$. Since $\lim \max \{k_{a_i}, j=0,\cdots, n_i\}=0$, the sequence $\{y_i\}$ has the limit point

x. Therefore ϕ is a continuous mapping.

Let g be a continuous mapping of a closed subset A of a metric space Z to X. Since S is a convex normed vector space, g is an extension g' from Z to S (cf. [4, (3.1)]). Put $\tilde{g} = \tilde{\phi}\tilde{g}'$. Then \tilde{g} is a required extension of g. This completes the proof.

References

- K. Borsuk: Über eine Klasse von lokal zusammenhängenden Räumen, Fund. Math., 19, 220-243 (1932).
- [2] C. H. Dowker: Topology of metric complex, Amer. J. Math., 74, 555–577 (1952).
- [3] C. H. Dowker: Homotopy extension theorems, Proc. London Math. Soc., (3) 6, 100-115 (1956).
- [4] J. Dugundji: An extension of Tietze's theorem, Pacific J. Math., 1, 353-366 (1951).
- [5] C. Kuratowski: Sur le prolongement des fonctions continues et les transformations en polytopes, Fund. Math., 24, 259-268 (1935).
- [6] C. Kuratowski: Sur les espaces localement convexes et péaniens en dimension n, Fund. Math., **24**, 269–287 (1935).
- [7] S. Lefschetz: Topics in Topology, Princeton (1942).
- [8] K. Morita: Normal families and dimension theory for metric spaces, Math. Ann., 128, 350–362 (1954).
- [9] M. Wojdeslawski: Rétracte absolus et hyperspaces des continus, Fund. Math., 32, 184-192 (1939).