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(Comm. by Z. SUETUNA, M.J.,., March 12, 1957)

1o Concerning Gibbs’ phenomenon of the Fourier series H. Cramr
1] proved the following theorem.

Theorem 1. There exists a number to, 0 < ro< 1, with t&e follow-
ing property: If f(x) is simply discontinuous at a point , the (C, r)
means an(X) of the Fourier series of f(x) present Gibbs’ phenomenon
at $ for r< to, but not for r to.

On the other hand S. Izumi and M. Sat5 2 proved the follow-
ing theorems:

Theorem 2. Suppose that f(x)--a(x--$)-g(x), where (x) is a
periodic function with period 2r such that (x)-(r--x)/2 (0<x<2r),
and where

lim sup g(x)--0, lim inf g(x)-0,
x x

lira inf g(x) --ar, lim sup g(x) ar,

( 1 ) g($+u) du o(! x ]),

then Gibbs’ phenomenon of the Fourier series of f(x) appears at x--$.

Theorem 3. In Theorem 2, if we replace the condition (1) by
the following conditions:

g($-ku)du

and

{g(t+u)--g(t u)}du=o(ix

uniformly for all t in a neighbourhood of $, then Gibbs’ phenomenon
of the Fourier series of f(x) appears at

We proved that Theorem 1 holds even when the point $ is the
discontinuity point of the second kind, satisfying the condition in
Theorem 2 [3. More precisely,

Theorem 4. Suppose that
f(x) a4(x )+g(x)

where @x) is a periodic function with period 2r such that

and where
lim sup g(x)=O, lim inf g(x)=O,
x x

lim inf g(x) --ar, lim sup g(x) ar,
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fl g($+u) du--o(lx]).

Then there exists a number to, O< r0<l with the following property:
The (C, r) means of the Fourier series of f(x) present Gibbs’ phenome-
non at $ for r< %, but not for r to, ro being the CramSr number
in Theorem 1.

We shall extend Theorem 4 replacing the assumptions by those
of Theorem 3. More precisely

Theorem 5. Suppose that f(x)--a(x--$)+g(x), where (x) is a
periodic function with period 2 such that (x)-(--x)/2
and where

lira sup g(x)-lim inf g(x)-O
x x

lira inf g(x) --a, lim sup g(x)

( 2

and

(3) fX {g(t+u)--g(t u)}du=o(Ixi),

uniformly for all t in a neighbourhood of . Then there exists a
number r0, 0<r0<l, With the following property: The (C, r) means
of the Fourier series of f(x) present Gibbs’ phenomenon at for r< r0,
but not for rro, ro being the Cramr number in Theorem 1.

2. Proof of Theorem ;’. Without loss of generality, we can
suppose that $-0 and a=l. We have

a(x, f)--a(x,)--a(x, g).
By Theorem 1 a(/n, ) tends to a constant which is greater than
/2 if r< r0, but not greater than /2 if r r0. Since a(k/n, )
is near to /2 for sufficiently large k, if r<ro, there is a k such that
( ) +
tends to a constant, greater than /2; and if rro, then (4) tends
to /2. Hence it is sufficient to prove that a(/n, g)+a(k/n, g)
tends to zero as n, for any r, 0<r<l, and for any k.

Now

a;(x, g)-- g(t +x)K(t)dt---- g(t)K(t--x)dt,

where K;(t) is the nth Fejr kernel of order r. It is known that
( 5 ) K (t) An
and

K;(t)-- 1 sin[(n+l/2+r/2)t--vr/2} + rn (2 sin t/2y (n+ 1)(2 sin t/2)
1 n; sin {(n--,)t-- /2}
A+ (2 sin t/2)
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where A’n:(r+n)n [4. We write

+ x)dt

We shall estimate I only, since J may be estimated quite
We set now

similarly.

I-- g(t+x) cos{(n+(l+,)/2)t--(l+r)r/2} dt+I-I,+I.
/

At
By the Riemann-Lebesgue theorem we easily see I--o(1), and

COS1 g(t+x) cos{(l+r)(t--r)/2}--ti/-r- dt

1_ sin nt
.t+.sin.l+f_.t--_/2.-tr--dt=Is--I,(3[()( 51 say.

We have

f sinnt 1 ;’’/’" ), x(t+kr/n) }sinntdt
where

x(t)-g(t+x) sin {(1 +r)(t--)/2}.
By the second mean value theorem

(n-2/2
]Ig] <C n

j {g(x+t+2k/n)--g(x+t-(2k--1)/n)}dt +o(1)
=0

/n

which is o(1) by (2). Similarly Is-o(1), and hence I--o(1).
On the other hand

r dt A f_g(t+x).dt +o(1)I- g(t+x) (---1-)(2 sin t/2)
/n

A G(t)t= + A fdt

+
ln

Then by (5) and (2) we get
r/n t=/nl r/n

]-- J g(t +x)K;(t)dt [a(t)K’(t)=o + J (K(t))’a(t)dt --o(1),

where G(t)- g(u+x)du. Further

I-- g(t+x)K(t)dt-- g(t+x) sin{(n+l/2+r/2)t--rr/2} dt
/ /

A(2 sin t/2)+

f (n+ 1)(2 sin t/2) fr dt+ g(t+ x) 1 cos (n-- )t+ g(t+x) -A: n+, dt
:+ (2 sin t/2)

6:/n

I3 + I4+ I5, say,
and
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. + o(fn+l r .-(-)’o()} n+l -)=o(1).
/n

And further
._, cos (n-)t1 A+I g(t+x)--A; ,-/ (2 sin t/2)/n

1 f l+fA,+ + Io+I, say.
/n /n

Then
1 ._ fo cos it dt/ao 1-:

__
Az+n+ g(t+) (2 sin t[2)/n

A[;+x cos 2t 1 Ak+n+l COS It1 f g(t+x) X=I dt= G(t) =1A / (2 sin t/2) A (2 sin t/2)

__!__.f(t) - t
A / (2 sin t/2)

where

t=

r-2 IA,++ cos t

(2 sin]- sin t 4 sin t/2 cos t/2 An-+z+ cos t(2 sin t/2) A,,+z+
k=l k=l

(2 sin t/2)
Since /]AZ+l (--1, 2,..., n) is monotone increasing, we have

-2 A+IA,+z+ sin t <
[sin t[2[

Also
r-2A++ cos t

X=I

r-2An+2

[sin t/2
Hence

r--2 An+a+1 COS, An+z+1 (--1)
-G(r/n)II,ol____< G()

4 (2 sin ]2n)

f { nA, cos t/2 AE }+ IG(t)l
41sint/2l -4-[sin/2- dr-o(1).

/n

And further

I 1 -2 fl cos t
A: +Az+n+a g(t+x) -(2- sin t/2)/n

If we write
cos ,t

g(t +x) cos 2tg(t+x)
(2 sin t/2) ----dt+J,

then from the Riemann-Lebesgue theorem J=o(1) as -->. Now
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COSt

/n

f/+/,-l(+t+kla3-(-----!r-Cstdt+f (t+x)-csat dt
=o (t+/a)

/n ]n+l/X

(+t+2k/) (+t+(2+1)/)
k=O

/n
(t+2kl) (-42ki)l) J t dt +o(1).

In view of the second mean value theorem and (2), we get

(t+). cos t gt o(1/) +o(1)
t :o (ln+l)/n

+1 1 1o(1/) +o(1) o(1/) --+o(1)

=o(n)+o(1).
Hence

1 ] lAx+n+11 (t+x)-(2 sin_t/2).IS,, I A :+ /

_1_ 1 1 1
n __]+ (+n+l).-’, (n)---n n,_0()0(1).

Thus the theorem is proved.
Finally I wish to express my hearty thanks to Professor S. Izumi

for his kind adviees.
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