46. Some Operations on the Ranked Spaces. I

By Hatsuo Okano

(Comm. by K. KUNUGI, M.J.A., April 12, 1957)

Prof. K. Kunugi introduced the notion of the ranked spaces in the Note "Sur les espaces complets et régulièrement complets. I".¹⁾ It is the purpose of this Note to study the product spaces of ranked spaces and the function spaces F(E, G) which denotes the totality of functions of a fixed set E into a fixed ranked space $G.^{2}$

1. In [I] it is required that the system of neighbourhoods satisfies F. Hausdorff's axiom (C).³⁾ We shall attempt to exclude this hypothesis.

Let R be a space whose topology is given by a system of neighbourhoods which satisfies F. Hausdorff's axiom (A).³⁰ Then we can calculate the depth⁴⁰ of R and introduce the notion of the ranked spaces according to [I]. We shall conform ourselves, without contrary indication, to the notions and the terminology of [I]. But it is necessary to modify some notions as follows.

Definition 1. A ranked space is called to be *complete*⁶⁾ if, for every fundamental sequence $v_{\alpha}(p_{\alpha})$, $0 \leq \alpha \leq \omega_{\mu}$, the following conditions (1), (2) are satisfied:

$$(1) \qquad \qquad \cap v_{\alpha}(p_{\alpha}) \neq 0.$$

(2) $\bigcap_{\alpha} I\{v_{\alpha}(p_{\alpha})\}^{5} \neq 0 \quad \text{if } \omega_{\mu} < \omega_{\nu}.$

Definition 2. A set E is called to be *non-dense*⁷⁾ if, for every point p of R and every neighbourhood v(p) of p, $I\{v(p)\} \oplus \overline{A}$. A set F is called to be of the first category if it is a union of an ω_{ν} -sequence of non-dense sets: $F = \bigcup_{0 \le \alpha < \omega_{\nu}} F_{\alpha}$ where every F_{α} is non-dense.

Then we can prove Baire's theorem:

Theorem 1. In the complete ranked spaces any non-empty open set is not of the first category.

Proof. For proving the theorem it is sufficient to show that, if G is a non-empty open set and E_{2a} , $0 \le \alpha < \omega_{\nu}$, are non-dense sets, then $G \neq \bigcup E_{2a}$.

Since E_0 is non-dense, $G \not \equiv \overline{E}_0$. Therefore there exist a point p_0 , a rank γ_0 and $v_0(p_0)$ of rank γ_0 such that $v_0(p_0) \subseteq G$ and $v_0(p_0) \cap E_0 = 0$. Suppose that we have already defined $p_{\beta}, \gamma_{\beta}$ and $v_{\beta}(p_{\beta})$ for all β such that $0 \leq \beta < \alpha$ where $0 < \alpha < \omega_{\gamma}$ and they satisfy the following conditions (3) and (4):

 $(3) v_0(p_0) \supseteq v_1(p_1) \supseteq \cdots, \ \gamma_0 \leq \gamma_1 \leq \cdots, \ v_{\beta}(p_{\beta}) \in \mathfrak{V}_{r_{\beta}}.$

(4) For every even number β , $p_{\beta} = p_{\beta+1}$, $\gamma_{\beta} < \gamma_{\beta+1}$ and $v_{\beta}(p_{\beta}) \cap E_{\beta} = 0$. Suppose, first, α is an even and isolated number. Since E_{α} is non-dense, $I\{v_{\alpha-1}(p_{\alpha-1})\} \oplus \overline{E}_{\alpha}$. Then, owing to the condition (a),⁸⁾ there exist a point p_{α} , a rank γ_{α} and $v_{\alpha}(p_{\alpha})$ of rank γ_{α} such that $v_{\alpha}(p_{\alpha}) \subseteq v_{\alpha-1}(p_{\alpha-1})$, $v_{\alpha}(p_{\alpha}) \cap E_{\alpha} = 0$ and $\gamma_{\alpha} > \gamma_{\alpha-1}$. Suppose, next, α is a limiting number. Since R is complete and $\alpha < \omega_{\nu}$, $\bigcap_{\beta} I\{v_{\beta}(p_{\beta})\} \neq 0$. On the other hand $\alpha < \omega(R)$ implies $\bigcap_{\beta} I\{v_{\beta}(p_{\beta})\} = I\{\bigcap_{\beta} v_{\beta}(p_{\beta})\}$. So we can choose a point qand v(q) such that $v(q) \subseteq \bigcap_{\beta} v_{\beta}(p_{\beta})$. Since E_{α} is non-dense, $I\{v(q)\} \oplus \overline{E}_{\alpha}$. Then, by the condition (a), there exist a point p_{α} , a rank γ_{α} and $v_{\alpha}(p_{\alpha})$ of rank α such that $v_{\alpha}(p_{\alpha}) \subseteq \bigcap_{\beta} v_{\beta}(p_{\beta})$, $v_{\alpha}(p_{\alpha}) \cap E_{\alpha} = 0$ and $\gamma_{\alpha} > \sup_{\beta} \gamma_{\beta}$. If α is odd number, put $p_{\alpha} = p_{\alpha-1}$ and choose, by (a), a rank γ_{α} and $v_{\alpha}(p_{\alpha})$ of rank γ_{α} such that $\gamma_{\alpha} > \gamma_{\alpha-1}$ and $v_{\alpha}(p_{\alpha}) \subseteq v_{\alpha-1}(p_{\alpha-1})$.

Thus we have a fundamental sequence $v_{\alpha}(p_{\alpha})$, $0 \le \alpha < \omega_{\nu}$, such that $\bigcap_{a} v_{\alpha}(p_{\alpha}) \subseteq G$ and $\bigcap_{a} v_{\alpha}(p_{\alpha}) \cap (\bigcup_{a} E_{2\alpha}) = 0$. Since R is complete, $\bigcap_{a} v_{\alpha}(p_{\alpha}) \neq 0$. Therefore $G \not \sqsubseteq \bigcup E_{2\alpha}$. q.e.d.

Examples of complete ranked spaces not satisfying Hausdorff's axiom (C) will be given in Section 4.

2. On the product spaces. Let I be a non-empty set of indices. And let R_i , $i \in I$, be the ranked spaces satisfying the following conditions (5) and (6):

(5) The ranks of R_i , $i \in I$, are given by the same ordinal number ω_{ν} .

(6) Each of R_i satisfies the condition (a^{*}):

(a*) For every neighbourhood v(p) of a point p there exists α such that $0 \le \alpha < \omega_{\nu}$ and for all ordinal numbers β , $\alpha \le \beta < \omega_{\nu}$, there exists a neighbourhood u(p) of rank β included in v(p).

The cartesian product of R_i , $i \in I$, is denoted by $P_{i \in I}R_i$ and π_i denotes the projection of $P_{i \in I}R_i$ into the *i*-th coordinate space R_i .

Now we shall give a topology and a rank to $P_{i\in I}R_i$ as follows: The system of neighbourhoods of $p=(p_i)^{10}$ is the totality of

$$(7) \qquad \qquad \bigcap_{i \in A} \pi_i^{-1}(v(p_i))$$

where $v(p_i)$ is a neighbourhood of p_i and A is a subset of I whose power is $\langle \aleph_{\nu}$. Then $\omega(P_{i \in I}R_i) \geq \omega_{\nu}$. So we take as \mathfrak{B}_{α} , $0 \leq \alpha < \omega_{\nu}$, the totality of (7) where every $v(p_i)$ is of rank α in R_i . Then the condition (a) is satisfied.

Definition 3. The cartesian product thus ranked is called the product (ranked) space of R_i , $i \in I$, and denoted simply by $P_{i \in I}R_i$.

Theorem 2. The product space of ranked spaces is complete if and only if each coordinate space is complete.

Proof. Suppose that R_i is a complete ranked space for each i of

H. Okano

I. Let $p^{a} = (p_{i}^{a})$ and $v^{a}(p^{a}) = \bigcap_{i \in A_{a}} \pi_{i}^{-1}(v^{a}(p_{i}^{a})), 0 \le \alpha < \omega_{\mu}$, be a fundamental sequence in $P_{i \in I}R_{i}$. Since $v^{0}(p^{0}) \supseteq v^{1}(p^{1}) \supseteq \cdots$, then $A_{0} \subseteq A_{1} \subseteq \cdots$. Hence, for each i of $\bigcup_{a} A_{a}$, there exists an ordinal number $\alpha(i)$ such that $v^{a}(p_{i}^{a}), \alpha(i) \le \alpha < \omega_{\mu}$, is a fundamental sequence in R_{i} . Since R_{i} is complete, then $\bigcap_{a} v^{a}(p_{i}^{a}) \neq 0$. Therefore $0 \neq \bigcap_{i \in \bigcup_{a} A_{a}} \{\pi_{i}^{-1}(\bigcap_{a(i) \le a < \omega_{\mu}} v^{a}(p_{i}^{a}))\} \subseteq \bigcap_{a} \{\bigcap_{i \in A_{a}} \pi_{i}^{-1}(v^{a}(p_{i}^{a}))\} = \bigcap v^{a}(p^{a})$ and consequently (1) is satisfied in the product space. As to (2) it is sufficient to show that, if $\omega_{\mu} < \omega_{\nu}$, $I\{\bigcap_{i \in A_{a}} \pi_{i}^{-1}(v^{a}(p_{i}^{a}))\} \supseteq \bigcap_{i \in A_{a}} \pi_{i}^{-1}(I\{v^{a}(p_{i}^{a})\})$ because it implies that $\bigcap_{a} I\{v^{a}(p^{a})\} \supseteq \bigcap_{i \in \bigcup_{a} A_{a}} [\pi_{i}^{-1}(\bigcap_{a(i) \le a < \omega_{\mu}} I\{v^{a}(p_{i}^{a})\})]$. And it results clearly from the definition. Thus the product space is complete. The proof of the converse is obvious.

3. On the function spaces

Definition 4. A set G is called a right (left) ranked group if the following conditions (8), (9) and (10) are satisfied:

(8) G is a group.

(9) G is a ranked space.

(10) \mathfrak{V}_{α} is the totality of $v(e)p^{11}$ (pv(e)) where $p \in G$ and v(e) is a neighbourhood of the unit element e of G such that $v(e) \in \mathfrak{V}_{\alpha}$.

Let F(E,G) denote the family of all functions of a fixed set Einto a fixed group G. Then F(E,G) is a group with the natural group structure: if $f, g \in F(E,G)$, $(f \cdot g)(x) = f(x) \cdot g(x)$ and $(f^{-1})(x)$ $= \{f(x)\}^{-1}$ for all x of E; the unit element of F(E,G) is the function f_e whose value is constantly the unit element e of G.

Moreover, let G be a right (left) ranked group where the rank is given by ω_{ν} and Γ be a family of subsets of E satisfying the condition (11):

(11) Γ contains at least one non-empty set of E and if A_x , $0 \le \alpha < \gamma < \omega_{\nu}$, belong to Γ , there exists a member A of Γ such that $A \supseteq \bigcup_{a} A_{a}$. Then we shall construct the rank of F(E, G) as follows. Let $W_{\{A, v(e)\}}(f)$, where $f \in F(E, G)$, $A \in \Gamma$ and v(e) is a neighbourhood of e, denote the set of all functions g such that, for every x of A, $(g \cdot f^{-1})(x)((f^{-1} \cdot g)(x)) \in v(e)$. We shall regard the family of all sets of this form where f is fixed as the system of neighbourhoods of f. Then $\omega(F(E, G)) \ge \omega_{\nu}$. So we take as \mathfrak{B}_a , $0 \le \alpha < \omega_{\nu}$, the family of neighbourhoods where v(e) is of rank α in G. Then the condition (a) is satisfied and F(E, G) is a right (left) ranked group.

Definition 5. The rank of F(E, G) described above is called the rank defined by Γ and F(E, G) thus ranked is denoted by $F_{\Gamma}(E, G)$. Theorem 3. If G satisfies the following condition (C_0) , $F_{\Gamma}(E, G)$ is complete if and only if G is complete.

(C₀) If $v_1(e)$ and $v_2(e)$ are two neighbourhoods of e such that $v_1(e) \in \mathfrak{B}_{\tau_1}$, $v_2(e) \in \mathfrak{B}_{\tau_2}$, $\gamma_1 < \gamma_2$ and $v_1(e) \supseteq v_2(e)$, then there exists a neighbourhood u(e) of e and, for every point q of $I\{v_2(e)\}, u(e)q(qu(e)) \in v_1(e)$.

Proof. Suppose that G is complete. Let

(12) $W_{\{A_0, v_0(e)\}}(f_0) \supseteq \cdots \supseteq W_{\{A_\alpha, v_\alpha(e)\}}(f_\alpha) \supseteq \cdots, 0 \le \alpha < \omega_\mu$ be a fundamental sequence of $F_r(E, G)$. Since $A_0 \subseteq A_1 \subseteq \cdots$, then, for each x of $\bigcup_{\alpha} A_{\alpha}$, there exists an ordinal number $\alpha(x)$ such that, if $\alpha \ge \alpha(x), x \in A_\alpha$. So, for such an x, (13) $v_{\alpha(x)}(e) f_{\alpha(x)}(x) \supseteq \cdots \supseteq v_\alpha(e) f_\alpha(x) \supseteq \cdots, \alpha(x) \le \alpha < \omega_\mu$

is a fundamental sequence of G. Since G is complete, there exists a point contained in $\bigcap_{a(x) \leq a < w\mu} v_a(e) f_a(x)$, say, p_x . Now let f denote the element of $F_{\Gamma}(E, G)$ such that $f(x) = p_x$ for $x \in \bigcup_a A_a$ and f(x) = e for $x \notin \bigcup_a A_a$. Then $f \in \bigcap_a W_{\{A_a, v_a(e)\}}(f_a)$. Thus (1) is satisfied for (12).

Suppose, moreover, $\omega_{\mu} < \omega_{\nu}$ for (12). Then we can take p_x in $\bigcap_{\alpha(x) \leq \alpha < \omega_{\mu}} I\{v_{\alpha}(e)f_{\alpha}(x)\}$. Now we shall show that

(14)
$$f \in \bigcap_{\alpha} I\{W_{\{A_{\alpha}, v_{\alpha}(e)\}}f(x)\}.$$

For any α , $0 \le \alpha < \omega_{\mu}$, let x be an arbitrary point contained in A_{α} and let β be an even ordinal number such that $\alpha \le \beta < \omega_{\mu}$. Then $p_x \in I\{v_{\beta+1}(e)f_{\beta+1}(x)\}$, so $p_x f_{\beta+1}(x)^{-1} \in I\{v_{\beta+1}(e)\}$. From the definition of the fundamental sequence, $v_{\beta}(e) \supseteq v_{\beta+1}(e)$ and the rank of $v_{\beta}(e) <$ the rank of $v_{\beta+1}(e)$. Therefore, from the hypothesis (C_0) , there exists a neighbourhood u(e) of e such that, for every x of A_{α} , $u(e)p_x f_{\beta}(x)^{-1}$ $\subseteq v_{\beta}(e)$,¹²⁾ that is, $u(e)p_x \in v_{\beta}(e)f_{\beta}(x)$. As $\alpha \le \beta$, then $u(e)p_x \in v_{\alpha}(e)f_{\alpha}(x)$ and consequently $W_{\{A_{\alpha},u(e)\}}(f) \subseteq W_{\{A_{\alpha},v_{\alpha}(e)\}}(f_{\alpha})$. It implies (14) and so $F_T(E, G)$ is complete.

To prove the converse of the proposition suppose that $F_{\Gamma}(E,G)$ is complete. Let $v_{\alpha}(e)p_{\alpha}$, $0 \leq \alpha < \omega_{\mu}$, be a fundamental sequence of Gand A be a non-empty set such that $A \in \Gamma$. And let f_p denote the function such that $f_p(x) \equiv p$ for all x of E. Then $W_{\{A,v_\alpha(e)\}}(f_{p_\alpha})$, $0 \leq \alpha$ $<\omega_{\mu}$, is a fundamental sequence of $F_{\Gamma}(E,G)$. Since $F_{\Gamma}(E,G)$ is complete, there exists an element f of $F_{\Gamma}(E,G)$ contained in $\bigcap_{\alpha} W_{\{A,v_\alpha(e)\}}(f_{p_\alpha})$. Then $f(A) \subseteq \bigcap_{\alpha} v_{\alpha}(e)p_{\alpha}$. If $\omega_{\nu} > \omega_{\mu}$, we can take f in $\bigcap_{\alpha} I\{W_{\{A,v_\alpha(e)\}}(f_{p_\alpha})\}$. Then $f(A) \subseteq \bigcap_{\alpha} I\{v_{\alpha}(e)p_{\alpha}\}$ and consequently G is complete. q.e.d.

We note that in the proof of Theorem 3 the hypothesis (C_0) was concerned only with (2). Hence we obtain

Theorem 4. If $\omega_{\nu} = \omega_0$, $F_{\Gamma}(E, G)$ is complete if and only if G is complete.

4. Examples

Example 1.¹³⁾ Let R be the set of all pairs p=(x, y) of real

numbers x, y and let l_0 be a fixed positive number. We shall topologize R as follows: Let n be a non-negative integer and l be a positive number such that $l > l_0$. And let $V_{n,l}$ denote the set of all points p = (x, y) such that $0 \le x < l$, $0 \le y < l$ and $xy < \frac{1}{n+1}$. The system of neighbourhoods of the origin 0 = (0, 0) is the totality of $V_{n,l}$ and the neighbourhoods of another point is given by the translation.

Then we have $\omega(R) = \omega_0$ and we can put \mathfrak{B}_n = the family of all neighbourhoods $V_{n,l}$, of all points. R is a complete ranked space not satisfying Hausdorff's axiom (C).

Example 2. Let G be the ranked group PU of Example 3 of [II], E be an arbitrary infinite set and Γ be composed by only one element E. Then, from Theorem 4, $F_{\Gamma}(E, G)$ is complete. Hausdorff's (C) is satisfied in G but not in $F_{\Gamma}(E, G)$.

References

- K. Kunugi: Sur les espaces complets et régulièrement complets. I-III, Proc. Japan Acad., **30**, 553-556, 912-916 (1954); **31**, 49-53 (1955), cited here as [I], [II] and [III].
- 2) In this Note we treat the case where G is a (ranked) group.
- F. Hausdorff: Grundzüge der Mengenlehre 1914 p. 213; T. Shirai gave another method for excluding this axiom, see Proc. Japan Acad., 33, p. 139.
- 4) Profondeur: See [I, Définition 1].
- 5) If A is a set of a space, $I\{A\}$ denotes the interior of A: $p \in I\{A\}$ if and only if there exists a neighbourhood v(p) of p such that $v(p) \subseteq A$. And \overline{A} denotes the closure of A.
- If Hausdorff's (C) is satisfied, this definition coincides with the definition given in [I].
- If Hausdorff's (C) is satisfied, this definition coincides with the classical one. Cf. for example, C. Kuratowski: Topologie I.
- 8) See [I, Définition 2].
- 9) Idem quod 8).
- 10) p_i denotes the *i*-th coordinate of p.
- 11) v(e)p denotes the set of all points qp where $q \in v(e)$.
- 12) Note that $f_{\beta} = f_{\beta+1}$.
- 13) Cf. the paper of T. Shirai cited in 3), p. 142.