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67. Perturbation of Continuous Spectra by Trace
Class Operators

By Tosio KhTO
Department of Physies, University of Tokyo

(Comm. by K. KuNgI, M.Z.., May 15, 1957)

1. Introduction. In a previous paper 1) the writer has shown,
among others, that the absolutely continuous part of the spectrum
of a self-adjoint operator is stable under a self-adjoint perturbation
of finite rank. The purpose of the present note is to extend this
result to a wider class of pertu’rbations.

Let (C) be a Hilbert space, B the algebra of all bounded linear
operators on to 2, S B the Schmidt class and T S the trace
class.) We denote by il ]], ]! i!, !1 I1 the ordinary norm, the
Schmidt norm and the trace norm respectively. The subset of T
consisting of all self-adjoint operators will be denoted by T.

THEOREM 1. Let Ho be a (not necessarily bounded) self-adjoint
operator and let Ve T. Then H--Ho z7 V is also self-adjoint. Let
o and 2 be the absolutely continuous ) parts of (C) with respect to

Ho and H, and let Po and P be the projections on o and , re-
spectively. Then the strong limits
(1.1) s--lim exp (itH) exp (--itHo)Po U
exist and are partially isometric operators with initial set o and
final set T. Their adjoints satisfy
(1.2) s--lim exp (itHo) exp (--itH)P U*.
The parts of Ho and H in o and .T respectively are unitarily
equivalent to each other, and the transformation of HoPo into HP
is effected by either of U )

(1.3) HP-- U.HoPoU2, HoP0= U2HPU.
The second theorem concerns itself with the properties of the

mappings which assign to each pair H0, H the operators U by (1.1).
Let H be any one of the equivalence classes of self-adjoint operators

1) T. Kato: On finite-dimensional perturbations of self-adjoint operators, J.
Math. Soc. Japan, 9, 239-249 (1957). This paper is quoted as (F).

2) For the Schmidt and trace classes, see R. Schatten: A theory of cross spaces,
Ann. Math. Studies, Princeton (1950).

3) For the terms "absolutely continuous" as applied to operators and vectors,
see (F).

4) Theorem 1 contains as a special case a theorem by M. Rosenblum in his paper
"Perturbation of the continuous spectrum and unitary equivalence ", to be published
in Pacific J. Math. The writer is indebted to Professor Rosenblum for having a chance
of seeing his paper before formal publication.
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modulo T. Theorem 1 shows that all operators of tI have absolutely
continuous parts which are unitarily equivalent to one another. We
consider the mappings (Ho, H) U.-- U.(H, Ho) from H H into the
set U of all partially isometric operators. In H we introduce a
metric in which the distance d(Ho, H) is equal to ll H--Ho II. In U
we consider either strong or weak topology induced by the correspond-
ing one of BU.

THEOREM 2. The mappings defined above are transitive in the
sense that (Po etc. are as in Theorem 1)
(1.4) U+(H., Ho)-- U(H:, H)U(H, Ho), in particular U(Ho, Ho)--Po.
For a fixed Ho and variable H., these mappings U(H, Ho) are strongly
continuous. For a fixed H and variable Ho, they are weakly con-
tinuous but not necessarily strongly continuous. For both variable Ho
and H, they are not necessarily weakly continuous.

2. Inequalities. For the proof of these theorems we need some
inequalities, which are deduced on the basis of (F). For the moment
we assume that V is of finite rank. As has been proved in (F), then
all assertions of Theorem 1 are true. Set
(2.1) Ut-exp (itH) exp --itHo),
Then we have

(2.2) (U Us)x-i exp (itH) V exp (--itHo)x dt.

We now assume that x 20 or x-Pox. Then lim Ux-lim UPox
U+x, t-+ , by (1.1). Thus

(2.3) ( U/ U)x=i exp (itH) V exp (--itgo)x dr.

Since
=2 Re (( U+ U)x, U/x). Thus it follows from (2.3) that

(2.4:) ll(U/-U)xll-2Rei (Vexp(-itHo)x, U/ ex(--itHo)x)dt,

where we also used the fact that
(2.g) exp (--itH)
which is a direet eonsequenee of (1.1).

V can be decomposed in the form v-wIvi   .ivi   , where W
=Sign V is partially isometric. Then it follows from (2.4), by making
use of the Sehwart inequalities, that
(2.6)
2 [VI/ exp (--itHo)x[I dt IV /W* U/exp(--itHo)xlidt

The integrals on the right are finite under certain additional assump-
tions on x, as is seen by the following lemma due essentially to
Rosenblum?
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LEMMA 2.1. Let H= fdE() be a self-adjoint operator and let

But
d(E)x, A*o)/dI (d II E()x II/d)(d I! E()A*o,

so that d(E()x, A*)/d belongs to L(--, +) with the L norm
not exceeding m ] A* ]. Since the expression in in (2.8) is the
Fourier transform of this function, the application of Parseval’s for-
mulas gives the desired result

fl A exp (--itH)xldt 2m A* 2mA*=2mA.

We now relaee the seeond integral on the righ side of (2.6)

by and apply Lemma 2.1 to this integral. Since

]]V/, we obtain, after taking the square root, the inequality

(2.9) II(U+-U)xlI(BmIIVII) I! [Vi’/exp(--itHo)xl[dt

where x is subjected to the condition

From (2.9) and a similar inequality with U replaced by Ut, we obtain
finally the inequality ,, ,V! ’/ exp (--itHo)x +(f

So far V has been assumed to be of finite rank. But it is now
easy to remove this assumption by a simple limiting procedure, and
(2.11) is seen to be valid for any operator VsT.)
) we-a-ve--b;sed-te pr;o---f--(2:il)-o--e-resalt--o(F): If (2.11)could be

proved directly, the whole theory would be greatly simplified.

x be absolutely continuous with respect to H. Furthermore let
(2.7) dll E()x li/d-d(E()x, x)/d <__ m a.e.

for some constant m. Then we have for any AS

;/ll A exp (--itH)x !1 dt <__ 2rm !1A i1.

PROOF. As is easily seen, we may assume without loss of gen-
erality that H is absolutely continuous. Let {fp} be any countable
orthonormal set which spans the same subspace as the range of A
(the latter being separable). Then
(2.8) [I A exp (--itH)x II--_ I(A exp (--itH)x, Dn)i

=nlfexp (--it)d(E()x, A*o)l .
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3. Proof of Theorem 1. It follows from (2.11) that lim Uz
exists for t-->% provided Zo and (2.10) is satisfied. But the
set of such z is dense in 0 if the number m is varied over all
positive numbers. Since U is uniformly bounded, lim Utx, exists for
every ze0, that is, s-limUPo-U/ exists. Since UePo is partially
isometric with initial set 0, the same is true with U/. Furthermore,
(2.5) holds as before, and this implies that the part of H in U/o
is unitarily equivalent to the part of H0 in o. This part of H is
therefore absolutely continuous, so that U/o.

By symmetry we conclude in the same way that s--lim Ut*P.-U
exists, that U+ is partially isometric with initial set , that the
part of Ho in U+ is unitarily equivalent to the part of H in
and that U/o. Furthermore, we have
(3.1) U+ U/-s--lim U*PUPo-s-lim exp (itHo)P exp (--itHo)Po.
But l[ UU+x [[-[[PU/x[[-I[ U/x]l-[[ Pox Ii, since U/$p- Y/0.
Hence we can eliminate the factor P on the right side of (3.1) by
an argument used in 5 of (F). Then (3.1)reduces to U+U/-Po,
and it is easily seen that U/-=0, and similarly U/0-. These
results show that the final set of the partially isometric operator U/
is exactly and that U+ coincides with U+*. Since the operator U_
can be dealt with similarly, the proof of Theorem 1 is complete.

It will be noted that, since the existence of U/ has been estab-
lished, all results of 2 are true not only for V of finite rank but
also for any VT.

4. Proof of Theorem 2. The transitivity of the mappings
U+(H, Ho) can be proved quite in the same way as we have proved
U U/-Po at the end of 3.

To prove the continuity of these mappings for fixed Ho or fixed
H, it is sufficient to show that, given a sequence V e T such that
lim IIV.--VII.-0, we have for n-->

(4.1) s--lim U(Ho+ V,, Ho)- U(Ho+ V, Ho)
and
(4.2) w-lim U(Ho, Ho+ Vn)-= U(Ho, Ho+ V).
But since U(Ho, H)- U(H, Ho)*, (4.2) is a consequence of (4.1).
Thus it is sufficient to prove (4.1).

By the transitivity (1.4) already proved, it is sufficient to prove

(4.1) for the special case V-0. For simplicity we write
U(Ho+ Vn, Ho) and U[)- exp it(Ho-k V,)J exp (--itHo). Then (2.9)
is true with U+, U,, V replaced by U(+"), Uf), V, respectively (see the
end of 3), provided x0 and (2.10) is satisfied. Applying Lemma
2.1 again to the integral on the right side of this inequality and
setting s-0, we obtain the inequality I! (U+()- 1)x II 2m(r ][ V
whence follows limU(+’)x-x. Since this is true for all x of a set
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dense in o, we conclude that s--lim U+)--s--lim U+)Po--Po, which
is identical with (4.1) for V=0 because U/(Ho, Ho)-- P0. U_ can be
treated similarly.

The remaining negative assertions of Theorem 2 are verified by
a simple example. According to Friedrichs,6) there is an Ho and a V
of rank 2 such that H)--Ho+n-V is absolutely continuous for each
n-1,2,.., but Ho is not. This implies that U:(H(n),H())--P ’)

=IPo--U:(Ho, Ho). But if U/ were weakly continuous in both
variables jointly, we should have w-- lira U/(H), H))- U/(Ho, Ho)
contrary to the above example. Again, if the same mapping were
strongly continuous in the second variable for fixed first variable, we
should have s--lim U/(Ho, H()) U/(H0, Ho) Po. Combined with
s-- lirn U+(H(), H0)-- P0 already proved, this would give s-- lim U/(H’),
H)) s lim U/(H’), Ho) U/(Ho, H() Po, again a contradiction.

6) K. O. Friedrichs: On the perturbation of continuous spectra, Comm. Pure
Appl. Math., 1, 361-406 (1948). The cited example is given in 6 of this paper, where
it is not stated explicitly that the perturbation under consideration is of rank 2, but
this can be verified easily.


