78. Inferior Limit of a Sequence of Potentials

By Masanori KISHI

Mathematical Institute, Nagoya University (Comm. by K. KUNUGI, M.J.A., June 12, 1957)

1. In a locally compact space Ω we consider a sequence of potentials of positive measures. In case that Ω is the τ -dimensional euclidean space R^{τ} ($\tau \geq 2$), a fundamental theorem, which was proved by Brelot [1], asserts that the inferior limit of a sequence of newtonian potentials is equal to a potential of a positive measure in the complement of a exceptional set E of inner capacity zero. Cartan [4], using the energy principle, showed that the set E is of outer capacity zero. Recently Brelot has proved that this fact follows from Choquet's result [5] on the capacitability of Borel sets. The problem of capacitability in the potential theory in a locally compact space has not yet been solved, and so in this note we shall prove under an additional condition that E is of outer capacity zero (see Brelot and Choquet [3]).

2. Let Ω be a locally compact space. We consider always positive measures μ in Ω with compact carrier, denoted by S_{μ} . Let $\Psi(P, Q)$ be a positive, symmetric, continuous and real valued function defined on $\Omega \times \Omega$, which is finite except at the points of the diagonal set of $\Omega \times \Omega$. The potential of μ is defined by

$$U^{\mu}(P) = \int \Phi(P, Q) \, d\mu(Q).$$

In this paper μ will be called *admissible* on a compact set K, if $S_{\mu} \subset K$ and $U^{\mu}(P) \leq 1$ everywhere in \mathcal{Q} . The supremum of the total masses of admissible measures on K is defined to be the capacity of K and denoted by cap (K). The inner capacity cap_i (A) of $A \subset \mathcal{Q}$ is equal to sup cap (K) for compact $K \subset A$ and the outer capacity cap_e (A) is equal to inf cap_i (δ) for open $\delta \supset A$. Hence, for every open set δ , we have cap_i $(\delta) = \operatorname{cap}_e(\delta)$. We shall designate the common value of these two capacities by cap (δ) . We say that a property holds quasi everywhere in \mathcal{Q} if it holds at each point of \mathcal{Q} except at the points of a set of outer capacity zero.

Definition 1. We shall say that a potential U^{μ} is quasi continuous in Ω , if, for any positive number ε , there is an open set δ_{ε} such that cap $(\delta_{\varepsilon}) \leq \varepsilon$ and the restriction of U^{μ} to $\Omega - \delta_{\varepsilon}$ is continuous.

Definition 2. We say that Φ satisfies the quasi continuity principle, if the continuity of the restriction of any potential U^{μ} to S_{μ} implies the quasi continuity of U^{μ} in Ω .

Clearly the quasi continuity principle follows from the continuity principle. (For the continuity principle, see Ohtsuka [9-11], Kishi [7], Choquet [6], Ninomiya [8].)

At first we shall assume the quasi continuity principle and prove the following

Theorem 1. Let μ_n $(n=1, 2, \cdots)$ be measures on a compact set K such that $U^{\mu_n} \leq M < +\infty$ in Ω . If $\{\mu_n\}$ converges vaguely to μ , then we have

$$\lim\, U^{\mu_n}=\,U^{\mu}$$

quasi everywhere in Ω .

3. We shall prove two lemmas for later use.

Lemma 1 (Brelot [2, Lemma 5]). Let μ_n $(n=1, 2, \cdots)$ be measures on a compact set K such that $U^{\nu_n} \leq M < +\infty$. If $\{\mu_n\}$ converges vaguely to μ and a potential U^{ν} is quasi continuous in Ω and $U^{\nu} \leq 1$, then we have

$$\lim\int U^{\mu_n}d
u = \int U^{\mu}d
u.$$

Proof. Obviously $\int U^{\mu} d\nu \leq \underline{\lim} \int U^{\mu_n} d\nu$. Hence it is sufficient to show $\overline{\lim} \int U^{\mu_n} d\nu \leq \int U^{\mu} d\nu$. U^{ν} being quasi continuous, for any $\varepsilon > 0$, we can find an open set δ_{ε} such that $\operatorname{cap}(\delta_{\varepsilon}) \leq \varepsilon$ and the restriction of U^{ν} to $\Omega - \delta_{\varepsilon}$ is continuous. Put

$$f = \left\{egin{array}{ccc} U^{
u} & ext{on} & \ arnothing - \delta_arepsilon \ 0 & ext{in} & \ \delta_arepsilon. \end{array}
ight.$$

Then f is upper semi-continuous. Hence we have a continuous function g such that $g \ge f$ and $\int g \, d\mu \le \int f \, d\mu + \varepsilon = \int_{\Omega - \delta_{\varepsilon}} U^{\nu} \, d\mu + \varepsilon$. We can see that

On the other hand it is easily seen that

$$\mu_n(\delta_{\mathfrak{e}}) \leq M {arepsilon} \quad ext{and} \quad \int\limits_{\delta_{\mathfrak{e}}} U^{
u} d\mu_n \leq M {arepsilon}.$$

Therefore

$$\overline{\lim}\int U^{
u}d\mu_{n}\!\leq\!\int U^{
u}d\mu\!+\!(M\!+\!1)arepsilon.$$

Consequently we have

$$\begin{split} &\lim \int U^{\mu_n} d\nu = \lim \int U^{\nu} d\mu_n \leq \int U^{\nu} d\mu = \int U^{\mu} d\nu. \\ & \text{Lemma 2 (Cartan [4, Proposition 5]).} \quad Every \ potential \ U^{\mu} \ is \end{split}$$

No. 6]

quasi continuous in Ω .

Proof. Since the set of points P such that $U^{\mu}(P) = +\infty$ is a G_{δ} set of outer capacity zero, we may suppose that U^{μ} is finite in \mathcal{Q} . For any $\varepsilon > 0$ and for any positive integer n, by Lusin's theorem, there is a compact set K_n such that $\mu(\mathcal{Q}-K_n) < \frac{\varepsilon}{2 \cdot 4^n}$ and U^{μ} is continuous on K_n . Then the potential U^{μ_n} of the restriction μ_n of μ to K_n is continuous on K_n , and hence, by our quasi continuity principle, U^{μ_n} is quasi continuous in \mathcal{Q} . Therefore, we have an open set δ_n such that the restriction of U^{μ_n} to $\mathcal{Q}-\delta_n$ is continuous and cap $(\delta_n) \leq \frac{\varepsilon}{2^{n+1}}$. Put

$$B_n = \left\{ P \in \mathcal{Q} - \delta_n; \ U^{\mu}(P) - U^{\mu_n}(P) > \frac{1}{2^n} \right\}$$

Then B_n is open in $\Omega - \delta_n$ and $B_n \cup \delta_n$ is open in Ω . Hence

$$ag{cap}\left(B_{n}\!\sim\!\delta_{n}
ight)\!\leq\! ext{cap}_{i}\left(B_{n}
ight)\!+\! ext{cap}\left(\delta_{n}
ight)\!\leq\! ext{cap}_{i}\left(B_{n}
ight)\!+\!rac{arepsilon}{2^{n+1}}$$

We shall show that $\operatorname{cap}_i(B_n) \leq \frac{\varepsilon}{2^{n+1}}$. For any compact subset e of B_n , let γ be admissible on e. Then

whence

$$\gamma(e) < rac{arepsilon}{2^{n+1}} \quad ext{and} \quad ext{cap} \left(e
ight) \leq rac{arepsilon}{2^{n+1}}$$

Thus we have seen that $\operatorname{cap}_i(B_n) \leq \frac{\varepsilon}{2^{n+1}}$ and hence $\operatorname{cap}(B_n \cup \delta_n) \leq \frac{\varepsilon}{2^n}$, and that $\operatorname{cap}(\delta_{\varepsilon}) \leq \varepsilon$, where $\delta_n = \bigcup (B_n \cup \delta_n)$. Then it follows that the restriction of U^{μ} to $\mathcal{Q} - \delta_{\varepsilon}$ is continuous, because, on $\mathcal{Q} - \delta_{\varepsilon}$, $0 \leq U^{\mu} - U^{\mu_n} \leq \frac{1}{2^n}$ and U^{μ_n} is continuous.

By Lemmas 1 and 2 we have

Corollary. If μ_n $(n=1, 2, \cdots)$ are positive measures on a compact set such that $U^{\mu_n} \leq M < +\infty$ and that $\{\mu_n\}$ converges vaguely to μ and if a potential $U^{\nu} \leq 1$, then we have

$$\lim\int U^{\mu_n}d
u = \int U^{\mu}d
u.$$

4. Proof of Theorem 1. As $\{\mu_n\}$ converges vaguely to μ , $U^{\mu} \leq \lim_{n \to \infty} U^{\mu_n}$ everywhere in Ω . Hence it is sufficient to prove that $U^{\mu} \geq \lim_{n \to \infty} U^{\mu_n}$ quasi everywhere in Ω . Put $V_n = \inf(U^{\mu_n}, U^{\nu_{n+1}}, \cdots)$ and $V_{n,m} = \min(U^{\mu_n}, \cdots, U^{\mu_m})$ $(m \geq n)$. Then the sequence $V_{n,m}$ (m=n, m)

316

cap

 $n+1,\cdots$) decreases to V_n as $m \to \infty$ and the sequence V_n increases to $V=\underline{\lim} U^{\mu_n}$ as $n\to\infty$. For any $\varepsilon'>0$ we have an open set $\delta_{\varepsilon'}$ such that $\operatorname{cap}(\delta_{\varepsilon'}) \leq \varepsilon'$ and each U^{μ_n} and U^{μ} are continuous on $\mathcal{Q}-\delta_{\varepsilon'}$ by Lemma 2. For any positive number ε , we put

and
$$\begin{split} E_{n,m}(\varepsilon) &= \{P; \ V_{n,m}(P) - U^{\mu}(P) > \varepsilon\} \\ E_{n,m}^{\varepsilon'}(\varepsilon) &= \{P \in \mathcal{Q} - \delta_{\varepsilon'}; \ V_{n,m}(P) - U^{\mu}(P) > \varepsilon\}. \\ E_{n,m}^{\varepsilon'}(\varepsilon) \text{ is open in } \mathcal{Q} - \delta_{\varepsilon'} \text{ and } E_{n,m}^{\varepsilon'}(\varepsilon) \cup \delta_{\varepsilon'} \text{ is open in } \mathcal{Q}. \end{split}$$

$$egin{aligned} & E_{n,m}(arepsilon)) \leq ext{cap}\left(E_{n,m}^{arepsilon'}(arepsilonigararrow \delta_{arepsilon'}) \leq ext{cap}_{i}\left(E_{n,m}^{arepsilon'}(arepsilon)
ight) + ext{cap}\left(\delta_{arepsilon'}
ight) \ & \leq ext{cap}_{i}\left(E_{n,m}^{arepsilon'}(arepsilon)
ight) + arepsilon'. \end{aligned}$$

We shall prove that $\lim_{m} \operatorname{cap}_{i}(E_{n,m}^{\varepsilon'}(\varepsilon))=0$. We can see immediately that $E_{n,m+1}^{\varepsilon'}(\varepsilon) \subset E_{n,m}^{\varepsilon'}(\varepsilon)$ and $\overline{E_{n,m+1}^{\varepsilon'}(\varepsilon)} \subset E_{n,m}^{\varepsilon'}\left(\frac{\varepsilon}{2}\right)$. In fact, if $P^{(k)} \in E_{n,m+1}^{\varepsilon'}(\varepsilon)$ and $P^{(k)}$ tends to P_{0} , then it follows that $P_{0} \in \mathcal{Q} - \delta_{\varepsilon'}$ and that $\lim_{k} V_{n,m+1}(P^{(k)}) = V_{n,m+1}(P_{0})$ and $\lim_{k} U^{\nu}(P^{(k)}) = U^{\mu}(P_{0})$. If $\lim_{m} \operatorname{cap}_{i}(E_{n,m}^{\varepsilon'}(\varepsilon))$ $= \alpha > 0$, we should have, for any $m \ge n$, and admissible measure $\gamma_{n,m}$ on a compact subset $e_{n,m}$ of $E_{n,m}^{\varepsilon'}(\varepsilon)$ such that $\gamma_{n,m}(e_{n,m}) \ge \frac{\alpha}{2}$. As $\operatorname{cap}_{i}(E_{n,n}^{\varepsilon'}(\varepsilon)) \ge \operatorname{cap}_{i}(E_{n,m}^{\varepsilon'}(\varepsilon)) \ge \gamma_{n,m}(e_{n,m})$, a subsequence $\{\gamma_{n,m'}\}$ of $\{\gamma_{n,m}\}$ converges vaguely to a positive measure γ , whose total mass is obviously not smaller than $\frac{\alpha}{2}$. S_{τ} is contained in $E_{n,m}^{\varepsilon'}\left(\frac{\varepsilon}{2}\right)$ for every sufficiently large m; otherwise, there would be $P_{0} \in S_{\tau} - E_{n,m_{0}}^{\varepsilon'}\left(\frac{\varepsilon}{2}\right)$ for some m_{0} , hence there would be a neighborhood δ of P_{0} such that $\delta \sim E_{n,m_{0}+1}^{\varepsilon'}(\varepsilon) = \phi$. Then $\gamma(\delta) > 0$ and $\gamma_{n,m'}(\delta) = 0$ for every $m' \ge m_{0} + 1$, which is absurd. Since $S_{\tau} \subset E_{n,m_{0}}^{\varepsilon'}\left(\frac{\varepsilon}{2}\right)$, we have

$$\frac{\alpha\varepsilon}{4} \leq \frac{\varepsilon}{2} \gamma(\mathcal{Q}) \leq \int (V_{n,m} - U^{\mu}) d\gamma \leq \int (U^{\mu_m} - U^{\mu}) d\gamma \qquad (2)$$

for every sufficiently large m. On the other hand we have $\lim_{m} \int U^{\mu_m} d\gamma$ = $\int U^{\mu} d\gamma$ by Corollary. This contradicts (2). Consequently, $\lim_{m} \operatorname{cap}_i$ $(E_{n,m}^{\varepsilon'}(\varepsilon))=0$. Therefore, from (1), we see that $\lim_{m} \operatorname{cap}_e(E_{n,m}(\varepsilon)) \leq \varepsilon'$, and hence $\lim_{m} \operatorname{cap}_e(E_{n,m}(\varepsilon))=0$.

Now we put

and

$$egin{aligned} &E_n(arepsilon)\!=\!\{P extsf{;}\;V_n(P)\!-\!U^\mu(P)\!>\!arepsilon\}\ &E(arepsilon)\!=\!\{P extsf{;}\;V(P)\!-\!U^\mu(P)\!>\!arepsilon\}. \end{aligned}$$

Then, as $E_n(\varepsilon) \subset E_{n,m}(\varepsilon)$ and $E(\varepsilon) = \bigcup E_n(\varepsilon)$, we have $\operatorname{cap}_e(E_n(\varepsilon)) = 0$ and $\operatorname{cap}_e(E(\varepsilon)) = 0$. Hence, by the usual argument, we see that $U^{\mu}(P) \ge V(P)$ quasi everywhere in Ω .

M. Kishi

5. In Theorem 1, we have required the uniform boundedness of U^{μ_n} $(n=1, 2\cdots)$; when φ satisfies the continuity principle, this condition, the uniform boundedness of U^{μ_n} $(n=1, 2, \cdots)$, is not necessary.

Theorem 2. Let φ be a kernel function which satisfies the continuity principle. Let μ_n $(n=1, 2, \cdots)$ be measures on a compact set K. If $\{\mu_n\}$ converges vaguely to μ , then we have

$$\lim \, U^{\mu_n}=\, U^{\nu}$$

quasi everywhere in Ω .

To prove this theorem, we shall prove, at first, the following

Lemma 3. Let μ_n be measures on a compact set. If $\{\mu_n\}$ converges vaguely to μ and a potential $U^{\tau} \leq 1$, then it holds that $\int U^{\mu} d\gamma = \int V d\gamma$, where $V = \lim U^{\mu_n}$.

Proof. We assert that $\gamma(E) = 0$, where

 $E = \{P; V(P) - U^{\mu}(P) > 0\}.$

In fact, if $\gamma(E) = \alpha > 0$, we can take a compact set $e \subset E$ such that $\gamma(e) \ge \frac{\alpha}{2}$. Then, as the restriction γ' of the measure γ to e is admissible on e, we have $\operatorname{cap}_i(E) \ge \operatorname{cap}(e) \ge \frac{\alpha}{2}$. This contradicts the fact that E is of inner capacity zero (see Ohtsuka [12], Brelot and Choquet [3]). Hence we get $\int U^{\mu} d\gamma = \int_{\Omega-E} U^{\mu} d\gamma = \int_{\Omega-E} V d\gamma = \int V d\gamma$.

Now we shall prove Theorem 2. We proceed in the same way as in the proof of Theorem 1. If $\lim_{m} \operatorname{cap}_{i}(E_{n,m}^{\varepsilon}(\varepsilon)) = \alpha > 0$, then we have an admissible measure γ , for which the inequality

$$rac{lphaarepsilon}{4} \leq \int (V_{n,m} - U^{\mu}) \, d\gamma$$

holds for every sufficiently large m. Here we let m tend to infinity, and we have

$$\frac{\alpha\varepsilon}{4} \leq \int (V_n - U^{\mu}) \, d\gamma \leq \int (V - U^{\mu}) \, d\gamma. \tag{3}$$

The last integral of (3) is equal to zero by Lemma 3, which is impossible. Consequently, we have $\lim_{m} \operatorname{cap}_{i}(E_{n,m}^{\varepsilon'}(\varepsilon))=0$. Then, we can prove, analogously as in the proof of Theorem 1, that $V = U^{\mu}$ quasi everywhere in \mathcal{Q} .

6. Now we consider a family of potentials $\{U^{\mu_i}\}$ $(i \in I)$ and its lower envelope. Using Brelot and Choquet's method [3] we can prove

Theorem 3. Let Ω be a locally compact space which has a countable base of open sets and Φ be a kernel function which satisfies the continuity principle. Let $\{\mu_i\}$ $(i \in I)$ be a family of positive measures. Suppose that Inferior Limit of a Sequence of Potentials

a) S_{μ_i} $(i \in I)$ is contained in a compact set K;

b) the total mass $\mu_i(K) \leq M$ for each $i \in I$;

c) for any two potentials U^{μ_1} and U^{μ_2} of the family $\{U^{\mu_i}\}$ $(i \in I)$, there exists a potential U^{μ_3} in this family such that $U^{\mu_3} \leq \min(U^{\mu_1}, U^{\mu_2})$.

Then we can find a positive measure μ such that

$$U^{\scriptscriptstyle\mu} = \inf_{i \in {\scriptscriptstyle I}} \, U^{\scriptscriptstyle\mu_i}$$

quasi everywhere in Ω .

Proof. As Brelot and Choquet have shown, we can take a subsequence $\{\mu_n\}$ from $\{\mu_i\}$ $(i \in I)$ such that $\{U^{\mu_n}\}$ is decreasing and $\{\mu_n\}$ converges vaguely to a positive measure μ and that

$$U^{\mu} \leq \inf_{i \in I} U^{\mu_i} \leq \lim_n U^{\mu_n}.$$

Then, by Theorem 2, $U^{\mu} = \lim_{n} U^{\mu_n} = \inf_{i \in I} U^{\mu_i}$ quasi everywhere in \mathcal{Q} .

Remark. After this note was presented, G. Choquet has announced the same result as our Theorem 2 in his paper: Sur les fondements de la théorie fine du potentiel, C. R. Acad. Sci., Paris, 244, 1606-1609 (1957).

References

- M. Brelot: Sur le potentiel et le suites de fonctions sousharmoniques, C. R. Acad. Sci., Paris, 207, 836 (1938).
- [2] M. Brelot: Nouvelle démonstration du théorème fondamental sur la convergence des potentiels, Ann. Inst. Fourier, 6, 361–368 (1955–1956).
- [3] M. Brelot and G. Choquet: Le théorème de convergence en théorie du potentiel (to appear).
- [4] H. Cartan: Théorie du potential newtonien, énergie, capacité, suites de potentiels, Bull. Soc. Math., 73, 74-106 (1945).
- [5] G. Choquet: Theory of capacities, Ann. Inst. Fourier, 5, 131-295 (1953-1954).
- [6] G. Choquet: Les noyaux réguliers en théorie du potential, C. R. Acad. Sci., Paris, 243, 635–638 (1956).
- [7] M. Kishi: On a theorem of Ugaheri, Proc. Japan Acad., 32, 314-319 (1956).
- [8] N. Ninomiya: Sur le principe de continuité dans la théorie du potentiel, Jour. Inst. Polytech. Osaka City Univ., 8, 51-56 (1957).
- [9] M. Ohtsuka: Sur un espace complet de mesures positives dans la théorie du potentiel, Proc. Japan Acad., 32, 311–313 (1956).
- [10] M. Ohtsuka: Sur un théorème de M. Kishi, Proc. Japan Acad., 32, 722-725 (1956).
- [11] M. Ohtsuka: Les relations entre certains principes en théorie du potentiel, Proc. Japan Acad., 33, 37–40 (1957).
- [12] M. Ohtsuka: Selected Topics in the Theory of Functions, Tokyo (1957) (in Japanese).