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Let R be a modulared semi-ordered linear space and m be a
modular on R. On R we can define two norms as follows:

I! x ll inf 1 +m(x) Ill x Ill inf 1 (x R).

Ix]! is said to be the first norm by m and Ill’Ill is said to be the
second norm or the modular norm by m. Since we have !11 !11!1 !i
2 Ill Ill for every R (cf. 4), they are equivalent to each other.

It is well known that if a modular m is finite, i.e. re(x)< o for
all x eR, then the modular norm is continuous, and that the converse
of this is true when R has no atomic element.

In 1_ I. Amemiya showed that if a modular m is monotone
complete and the modular norm is continuous, then the norm satisfies
the following condition: for every 1 >eO there exists an integer n
such that the norm of the sum of n mutually orthogonal elements
having their norm more than is always 1. In this paper we call
the norm satisfying the above condition to be finitely monotone.

We shall investigate the properties of finitely monotone norm and
show the form of the conjugate norm in 1. In 2 we examine the
relations between a modular and the modular norm in case it is finitely
monotone. In fact, we shall prove that if a modular m is uniformly

finite, then the modular norm is finitely monotone. The converse of this
is valid, if we suppose that R has no atomic element.

If a modular is defined on a universally continuous semi-ordered
linear space, then as showed above, we can define the norms whose
convergences are equivalent to the modular convergence.) Thus it will
be conjectured that if a norm is defined on a universally continuous
semi-ordered linear space, then there may be defined a modular whose
convergence is equivalent to the norm convergence. In 3 we shall
establish a normed semi-ordered linear space which is a sort of KSthe
space on [0, 1, und it answers negatively to this conjecture. Finitely

1) For the definition of the modular see H. Nakano [4]. The notations and
terminologies used here are due to the book [4].

2) m is said to be monotone complete if 0az T sup m(az)<:+ implies
A A

the existence of J a.
A

3) A sequence of elements xR (i=1, 2,...) is said to be modular convergent to
x0, if lim m(C(x-xo))=O for every >0.
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monotone norm plays essential rhle in constructing this example.
1. Let R be a universally continuous semi-ordered linear space

with a norm !! x !1. For convenience, we use a notation " , x" in

stead of , x when x l! xl-0 for i 3".
Definition 1.1. A norm on R is said to be finitely monotone, if

for every e>O, there exists an integer no-no(z) such that x-( , x,

!! x I11, II x IIe (i-1, 2, ..., n) implies nno.
About this definition we can see without difficulty that the words

"for every e0" may be replaced by "for some 1 >e>0" without
changing the meaning of the definition. And we can see also that all
norms on finite dimensional spaces are finitely monotone. A norm on
R is said to be uniformly monotone, if for any % e0 there exists 0
such that ab--O, I! a ll, II b Ills implies I! a-l-b llll a ll+ (cf. [4,
30). Nowwe have

Theorem 1ol. If a norm on R is uniformly monotone, then it is
finitely monotone.

Proof. For every e0, there exists ’>0 such that

II U li , x-,y-O implies I] x-y ]1]] x ]]+’, since ]! x I! is uniformly
1monotone. Then let no be an integer such that n0--+l. If

x= (. x, i] x l]_X, ]l xl ile (i-1,2,..-.,n), we have

!1 Ilall(R) a(n-
1Therefore we obtain n-ln0, which completes the proof.

The converse of this theorem is not true. The example is easily
obtained. The theorems in 3 concerning uniformly monotone norms
remain valid, if we replace the assumption of "uniformly monotone"
by "finitely monotone" without adding any difficulty in the proofs.

Truly we can state (cf. E3, Theorems 14.4, 14.7)
Theorem 1.2. If a norm on R is semi-continuous and finitely

monotone, then it is continuous.
Theorem 1.3. If a norm on R is finitely monotone and complete,

then it is monotone complete and continuous.
Now we define
Definition 1.2. A norm on R is said to be finitely fiat, if for

every >0 there exists e-e(/) such that x-- x, l]xl]:>l,
i1

(i--1, 2,..., n) implies n-7- x

It is easily seen that all norms on finitely dimensional spaces are
1 in casealways finitely fiat. Because, if we choose e such that
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N

of N-dimensional space, we have !! !1 <1 for such that -).,,
i=l

!1 x llz (i--1, 2,..., N).
denotes the norm conjugate space of R, i.e. the space of norm

bounded universally continuous linear functionals on R, and
denotes the conjugate norm of II x I! on R. Then we have

Theorem 1.4. .If a norm on R is finitely monotone, then the
conjugate norm is finitely fiat.

Proof. For an arbitrary 7> 0, we choose e’ such that 0< e’/< 1
2

For such s’ there exists also an integer no--no(e’) (which appears in
Definition 1.1), since the norm on R is finitely monotone by assumption.

Here we set --(/)-- 1 If there exist e (i-0, 1,..., n) such
6no

that 50--) , [] 50 [[:>1, [I 5 ][e (i-1, 2,..., n), then we can find
1yeR such that ][0][---3-<0(y), I[ Y.[I 1. Putting y-[R, we have

II < I! !1
and

2
3 6n0

This yields no<n. Since I[y]ll and [y[,[yl-0 for ij, there
exist y. (j-l, 2,..., n--no) such that I[ Yy II <e’ (j=l, 2,..., n--no).
It follows from above that

6 2 3

Thus we obtain !]0]nee’< n and n>0]]. Therefore the
2 27

conjugate norm is finitely flat by definition.
Theorem 1.. If a norm on R is finitely fiat, then the conjugate

norm is finitely monotone.
Proof. Let s be an arbitrary number such that 1>> 0. Now we

choose 7’ such that 7’2. There exists ’--’(7’) (which appears in
Definition 1.2), since [x] is finitely flat by assumption. If ]]5]1,
-, ]]]s (i-1,2,..., n), then we can find 0ye[R such

that 5 (y) >-, [] y <’. This implies ](y)- [(y)’where y-y. ]]y])l implies ]]] ]]y-ee’->Y’]] y[>]] y] and
= 2 2

] 5 ]] > 1, which contradicts the assumption on . Therefore we obtain
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II Y Ii < 1 and 1> ne’ which shows n2-. The proof is completed.

Since the "conjugate" of "uniformly monotone" is "uniformly
fiat", i.e. for any 7,>0 there exists >0 such that lal]b--0,
]]a7, ]b][$ implies a+b]i]iaii+s]lbll (cf. 4, 31), we have
immediately by the above theorems

Theorem 1.6. If a norm on R is uniformly fla$, Shen it is
finiSely fiat.

2. In this section let a modular m be defined on R and
(xe R) be the modular norm by m. Monotone completeness of m will
not be assumed here. A modular m is said to be uniformly finite if
sup m($x)< for every $>0. Then we have
m(x)l

Theorem 2.1. If a modular m on R is uniformly finite, then the
modular norm is finitely monotone.

Proof. If lllx0111 x, x0- x,, (i--1,2,...,n), then

IllXoli-, II-xl[l (i--1,2,..., n). Since m(a@b)--m(a)+m(b)

and [[x][[l implies m(x)l, it follows m(Xo- m(xn. As

m is uniformly finite, we obtain

supra x supm x --K<,

whieh yields Kn. Thus the modular norm is finitely monotone.
Suppose tha R has no atomic element. Since m()N implies a

partition such tha x= x{, m()l (i=1,2,..., N) in this ease,

we obtain obviously
Theorem 2.2. Sppose that R as o atomie eemen. If the

modular norm b m is finitelp monotone, hen m is niform[ finite.
The "eonjgate" of "niform[ finite" is "niformp ineeasing ",

i.e. lira inf ()-= (el. 4, 48). Therefore we have by Theorems

1.4 and 2.1
Theorem 2.3. If a modular is niforml gnereasing, then the

modular norm is finitel flat.
The propery called "finite[p monotone" (fiitep flat) is a topo-

logical one, hat is, we have o noe
Remark. If a norm is finitelp monotone (finitel flat), then the

fl t).
This fae can be verified easily by he definitions.
Now we ean stae
Theorem 2.4. Sgpose that R has o atome element. If the

odlar norm b a modular m is finitel flat, then m is nifoml
inereasin.
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Proof. Since the first norm by m and the modular norm are
mutually equivalent, it follows from the above remark that the former
is also finitely flat. Since the modular norm by the conjugate modular

of m is the conjugate norm of the first norm by m [4, 40, the
modular norm lll[ll by is finitely monotone by Theorem 1.5, and
the conjugate modular is uniformly finite by Theorem 2.2. As the
"conjugate" of "uniformly finite" is "uniformly ;ncreasing ", we
obtain Theorem 2.4.

3. First we shall prove
Theorem :.1. Let R be a non-atomic universally continuous

semi-ordered linear space, with a norm satisfying the following con-
ditions:

1) [] x is continuous;
2) [I x [] is not finitely monotone;
a) il x ll is monotone complete.)

Then there can not be defined modular on R in any way, whose conver-
gence coincides with that of [i x ![.

Proof. Suppose that such a modular m* is defined on R, then we
can define the modular norm ]]! x !]]* by m*. It is obvious that the
modular m* is also monotone complete, and lil xIll* and [{x[i are
mutually equivalent (cf. [4, 30). This implies that l[i x ill* is con-
tinuous and the modular m* is finite, since R has no atomic element.
Finiteness and monotone completeness of m* yield that m* is uniformly
finite (cf. [1). Then we see that !il x I!!* is finitely monotone, as showed
above. This implies that il x !i is also finitely monotone, which yields a
contradiction. Thus the proof is established.

Now we shall show that there exists truly the space which
satisfies the conditions of Theorem 3.1. For this purpose we construct
a KSthe space Xc on 0, lJ (cf. [2) in the following.

In the sequel e denotes a measurable set in [0, lJ and d(e) does
the Lebesgue measure of e. We split [0, 1 into e, (i-1,2,...; j=
1, 2,..., 2) such that

e+e--4 (i ::j),

e,e,- (:),
1d(e) , d(e,)-
2.

(i--1, 2,...; j--l, 2,..., 2+).
For convenience, e,0 denotes null set for every nl. We let denote
a sequence of measurable sets: --{e,)} (03"()2), and define that

--’ means 3"()--3"(’)for every n:>l. Let A be the set of such .
4) A norm onR is said to be monotone complete if 0azz supllaz]]<o

CA A
implies the existence of U az.

A
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Now for every e A, we define a measurable function c(t) as follows:
2", if t ee,( such that 3"()0;

c(t)-- 0 if t e--en, such that j(,) 0;
1, if t e such that Jn() O.

Let C be a least convex semi-normal order-closed set including
c(t) (eA). Then we can see that C satisfies the conditions of
KSthe space that has been given in [2, that is,

1) if cC and Oc(t)c(t), then c(t)C, that is, C is semi-normal;

2) if c C, 0al, a=l, then c(t) C;
=I =1

3) if c e C and c(t) c(t), then c C;
4) l eC, where l(t)-I a.e. on 0, 1;

5) c(t)dt 1, c C.

Here we consider the KSthe space Xv0, 1, i.e. the set of the

real valued measurable functions x(t) for which i x(t) x[-supf x(t)
c(t)dt< .

By the definitions of ] x(t)] and of C, we can see that

!! sup
A

It may be easily seen that this KSthe space is a non-atomic
universally continuous semi-ordered space and the norm [[ x(t) is
monotone complete. In order to see that ] x(t) is continuous, it is
sufficient to prove the following fact: for any x(t) e Xv 0, 1 a
there exists an integer no such that x(t).Xo,_.(t)]e_ (Z(t) means

the characteristic function of e). This fact can be ascertained without
difficulty. On the other hand, ]] x(t)] is not a finitely monotone norm.
For instance, put

2 on
0 otherwise (n-- 1, 2,...).

Then we obtain ]x(t) ]=1 (n=l, 2,...). But x(t) can be repre-
2n

sented as the forms: x= x,, where x,(t)-,t) and

2,...).
Thus this is the space which satisfies the conditions of Theorem

3.1. By virtue of Theorem 3.1 we see that we can define no monotone
complete modular on this space.
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