91. Notes on Knots and Periodic Transformations

By Shin'ichi Kinoshita
Department of Mathematics, Osaka University
(Comm. by K. Kunugi, m.J.A., July 12, 1957)

Introduction. Let T be a sense preserving periodic transformation of the 3 -sphere S^{3} onto itself. Furthermore let T be different from the identity and have at least one fixed point. Then it has been shown by Smith $^{9)}$ that the set F of all fixed points of T is a simple closed curve. Recently Montgomery, Zippin and Samelson ${ }^{556}$ have studied about the position of F in S^{3}, which also be concerned in this note. Hereafter we always assume that T is semilinear, and then F is polygonal. Let p be the period of T. Identifying the points

$$
x, T(x), \cdots, T^{p-1}(x)
$$

in S^{3}, we have an orientable 3 -manifold M. Then it will be proved in $\S 4$ that M is simply connected, i.e. the fundamental group of M consists of only one element. In $\S 5$, under the assumption that the well-known Poincaré conjecture on 3 -manifolds is true, we shall prove that almost all knots of the Alexander-Briggs's table ${ }^{1)}$ are not equivalent to F, if T is of period 2 . This will be done by the use of Alexander polynomials. ${ }^{2)}$ To prove these we shall study knots in 3manifolds in §§1-3. In this note everything will be considered from the semilinear point of view.
$\S 1$. Let M be a compact 3 -manifold (without boundary) and k an oriented simple closed curve in M. The fundamental group of $M-k$ will be denoted by $F(M-k)$ or sometimes by $F(k, M)$. Hereafter we always assume that k is homologous to 0 in M. Let V be a sufficiently small tubular neighbourhood of k in M. Then the boundary \dot{V} of V is a torus. A meridian of \dot{V} is a simple closed curve on \dot{V} which bounds a 2-cell in V but not on \dot{V}. Let x be an oriented meridian of \dot{V}. Since k is homologous to 0 in M, the linking number $\operatorname{Link}(k, x)$ of k and x can be defined and is equal to ± 1. We may always suppose that x is oriented such that

$$
\operatorname{Link}(k, x)=1
$$

For each integer $p(\neq 0) x^{p}$ is not homotopic to 1 .
Now let $\left\{x, X_{1}, X_{2}, \cdots, X_{n}\right\}$ be the set of generators of $F(M-k)$. Put

$$
\operatorname{Link}\left(k, X_{i}\right)=v(i) \quad(i=1,2, \cdots, n)
$$

and

$$
x_{i}=x^{-v(i)} X_{i} . \quad(i=1,2, \cdots, n)
$$

Then $\left\{x, x_{1}, x_{2}, \cdots, x_{n}\right\}$ forms again the set of generators of $F(M-k)$ and for each i
(1)
$\operatorname{Link}\left(k, x_{i}\right)=0$.

Let $R_{s}=1(s=1,2, \cdots, m)$ be defining relations of $F(M-k)$ with respect to $\left\{x, x_{i}\right\}$. Then the symbol

$$
\begin{equation*}
\left\{x, x_{1}, \cdots, x_{n}: R_{1}, \cdots, R_{m}\right\} \tag{2}
\end{equation*}
$$

will be called a presentation ${ }^{3)}$ of $F(M-k)$. A presentation of $F(M)$ is given by

$$
\begin{equation*}
\left\{x, x_{1}, \cdots, x_{n}: x, R_{1}, \cdots, R_{m}\right\} \tag{3}
\end{equation*}
$$

§ 2. Let $w \in F(k, M)$. Then w is written as a word which consists of at most x, x_{1}, \cdots, x_{n}. Let $f(w)$ be an integer which is equal to the exponent sum of w, summed over the element x. By (1) it is easy to see that f is a homomorphism of $F(k, M)$ onto the set of all integers. Now put

$$
F_{g}(k, M)=\{w \in F(k, M) \mid f(w)=0(\bmod g)\}
$$

where $g>0$. Then $F_{g}(k, M)$ is a normal subgroup of $F(k, M)$. Therefore there exists uniquely the g-fold cyclic covering space $\tilde{M}_{\theta}(k)^{7)}$ of $M-k$, whose fundamental group is isomorphic to $F_{g}(k, M)$. Since x is a meridian of \dot{V}, we can also define the g-fold cyclic covering space $M_{g}(k)$ of M, branched along k. For each $g M_{g}(k)$ is a closed 3manifold.
$F\left(\tilde{M}_{g}(k)\right)$ and $F\left(M_{g}(k)\right)$ are calculated from $F(k, M)$ as follows:
Let (2) be a presentation of $F(k, M)$. Put

$$
x_{i j}=x^{j} x_{i} x^{-j} . \quad\binom{i=1,2, \cdots, n}{j=0,1, \cdots, g-1}
$$

Since $f\left(R_{s}\right)=0$ for every $s(s=1,2, \cdots, m), x^{j} R_{s} x^{-j}$ is expressible by a word which consists of at most $x_{i j}$ and x^{g}. We denote it by notations

$$
x^{j} R_{s} x^{-j}=\widetilde{R}_{s} .
$$

Then

$$
\begin{equation*}
\left\{x^{g}, x_{i j}: \widetilde{R}_{s}\right\} \tag{4}
\end{equation*}
$$

is a presentation of $F\left(\tilde{M}_{g}(k)\right)$ and

$$
\begin{equation*}
\left\{x^{g}, x_{i j}: x^{g}, \widetilde{R}_{s}\right\} \tag{5}
\end{equation*}
$$

is one of $F\left(M_{g}(k)\right)$.
There is a homomorphism of $F\left(M_{g}(k)\right)$ onto $F(M)$. To prove this: let (3) and (5) be presentations of $F(M)$ and $F\left(M_{g}(k)\right.$), respectively. Put $h\left(x_{i j}\right)=x_{i}$ for each $x_{i j}$. It is easy to see that h can be extended to a homomorphism of $F\left(M_{g}(k)\right)$ onto $F(M)$.

From the above fact we have immediately the following
Theorem 1. Let M be a 3 -manifold and k a simple closed curve in M which is homologous to 0 in M. If a g-fold cyclic covering space $M_{g}(k)$ of M, branched along k, is simply connected, then M is also simply connected.
§ 3. Let (2) be a presentation of $F(k, M)$. Put

$$
x^{j} x_{i}^{ \pm 1} x^{-j}= \pm x^{j} x_{i} \quad\binom{i=1,2, \cdots, n}{j=0, \pm 1, \pm 2, \cdots}
$$

and replace the multiplication by the addition. Furthermore suppose that the addition is commutative. Then for each relation $R_{s}=1$ $(s=1,2, \cdots, m)$ we have a relation $\bar{R}_{s}=0$, which is a linear equation of x_{i}. If $m<n$, then we add $n-m$ trivial equations $0=0$ to the system of equations and then we may assume that $m \geqq n$. From these linear equations we can make the Alexander matrix, whose (s, i)-th term is the coefficient of x_{i} in $\bar{R}_{s}=0$.

If two oriented knots k_{1} and k_{2} in M are equivalent each other, then $F\left(k_{1}, M\right)$ and $F\left(k_{2}, M\right)$ are directly isomorphic. ${ }^{2)}$ It was proved by Alexander ${ }^{2)}$ that if two indexed groups are directly isomorphic each other, then the elementary factors different from unity of the Alexander matrices and also their products $\Delta(x, k, M)$ are the same each other. Of course they are determined up to factors $\pm x^{p}$. It should be remarked that $\Delta\left(x, k, M_{g}(k)\right)$ is also defined from (4) replacing x^{g} by x.

It can be proved that

$$
\begin{equation*}
\Delta\left(x, k, M_{g}(k)\right)=\Pi_{j=0}^{g-1} \Delta\left(\sqrt[l]{x} \omega_{j}, k, M\right) \tag{6}
\end{equation*}
$$

where $\omega_{j}=\cos \frac{2 \pi j}{g}+i \sin \frac{2 \pi j}{g}$. This is known for the case $M=S^{3} .{ }^{4)}$
But the proof of the latter depends essentially only on the following equation of determinants:
where $f(y)=a_{1}+a_{2} y+\cdots+a_{g} y^{g-1}$. Therefore the proof of our case is the same as the case $M=S^{3}$ and is omitted. As a special case of (6) we have

$$
\Delta\left(1, k, M_{g}(k)\right)=\Pi_{j=0}^{g-1} \Delta\left(\omega_{j}, k, M\right) .
$$

$\Delta\left(1, k, M_{g}(k)\right) \neq 0$ if and only if the 1-dimensional Betti number $p_{1}\left(M_{g}(k)\right)$ $=0$. If $p_{1}\left(M_{g}(k)\right)=0$, then $\left|\Delta\left(1, k, M_{g}(k)\right)\right|$ is equal to the product of torsion numbers (in this case if $\left|\Delta\left(1, k, M_{g}(k)\right)\right|=1$, then $M_{g}(k)$ has no torsion number).
§4. Now let T be a sense preserving (of course semilinear) periodic transformation of S^{3} onto itself. Furthermore let T be different from the identity and have at least one fixed point. Then the set F of all fixed points of T is a simple closed curve. ${ }^{9)}$ Suppose that p is the minimal number of the set of all positive periods of T.

It is easy to see that T is primitive. ${ }^{10)}$ Identifying the points

$$
x, T(x), \cdots, T^{p-1}(x)
$$

in S^{3}, we have an orientable 3 -manifold M. Hereafter we always use M only in this meaning. Since F is homologous to 0 in S^{3}, F is homologous to 0 in M. T acts locally as a rotation about $F .{ }^{5)}$ From this it follows that S^{3} is the p-fold cyclic covering space of M, branched along k. Then by Theorem 1 we have the following

Theorem 2. Suppose that T and M have the above meaning. Then M is simply connected.
§ 5. Now we assume that the Poincaré conjecture is true. Then by Theorem $2 M$ is a 3 -sphere, and the coefficients of $\Delta(x, F, M)$ are symmetric. ${ }^{8111}$ We consider in $\S 5$ only the case $p=2$.

Suppose first that the degree of $\Delta\left(x, F, S^{3}\right)$ is 2 . Then by (6) the degree of $\Delta(x, F, M)$ is also 2. Put

$$
\Delta(x, F, M)=a x^{2}+b x+a,
$$

where $a \neq 0$ and we may assume that $2 a+b=1$. Then by (6)

$$
\Delta\left(x, F, S^{3}\right)=a^{2} x^{2}+\left(2 a^{2}-b^{2}\right) x+a^{2} .
$$

Furthermore $4 a^{2}-b^{2}= \pm 1$, which means that $2 a-b= \pm 1$. From this it follows that $2 a=1$ or $2 a=0$. Since $a \neq 0$ and a is an integer, this is a contradiction. Thus we have proved that if the degree of $\Delta\left(x, k, S^{3}\right)$ is 2, then k is not equivalent to F.

By the same way it can be seen easily that if the degrees of $\Delta\left(x, F, S^{3}\right)$ are 4,6 and 8 , then $\Delta\left(x, F, S^{3}\right)$ are confined to the following forms, respectively:

$$
\begin{aligned}
& a^{2} x^{4}+2 a(1-2 a) x^{3}+\left(1-4 a+6 a^{2}\right) x^{2}+\cdots, \\
& a^{2} x^{6}-\left(2 a^{2}+b^{2}\right) x^{5}-\left(a^{2}+2 b-4 b^{2}\right) x^{4} \\
& \quad+\left(4 a^{2}-1+4 b-6 b^{2}\right) x^{3}-\cdots, \\
& a^{2} x^{8}+\left(2 a c-b^{2}\right) x^{7}+\left(2 a-4 a c-4 a^{2}+c^{2}+2 b^{2}\right) x^{6} \\
& \quad+\left(2 c-2 a c-4 c^{2}+b^{2}\right) x^{5}+(1-4 a-4 c+8 a c \\
& \left.\quad+6 a^{2}+6 c^{2}-4 b^{2}\right) x^{4}+\cdots .
\end{aligned}
$$

From this we have the following
Theorem 3. Let T be the same as that of Theorem 2. Furthermore suppose that the period of T is 2 . Then, under the assumption that the Poincaré conjecture is true, all knots of the Alexander-Briggs's table, ${ }^{122}$ except for the cases 8_{9} and 8_{20}, are not equivalent to F.

Remark. If we do not assume that the Poincaré conjecture is true, then we have the following exceptional case:

$$
\Delta\left(x, F, S^{3}\right)=a^{2} x^{2}-\left(2 a^{2}+1\right) x+a^{2},
$$

even if the degree of $\Delta\left(x, F, S^{3}\right)$ is 2 . The exceptional cases of higher degrees will be more complicated.

References

1) J. W. Alexander and G. B. Briggs: Ann. Math., 28, 562-586 (1927).
2) J. W. Alexander: Trans. Amer. Math. Soc., 30, 275-306 (1928).
3) R. H. Fox: Ann. Math., 59, 196-210 (1954).
4) R. H. Fox: Ann. Math., 64, 407-419 (1956).
5) D. Montgomery and H. Samelson: Can. J. Math., 7, 208-220 (1955).
6) D. Montgomery and L. Zippin: Proc. Amer. Math. Soc., 5, 460-465 (1954).
7) H. Seifert and W. Threlfall: Lehrbuch der Topologie (1934).
8) H. Seifert: Math. Ann., 110, 571-592 (1935).
9) P. A. Smith: Ann. Math., 40, 690-711 (1939).
10) P. A. Smith: Appendix B in Lefschetz, Algebraic Topology (1942).
11) G. Torres and R. H. Fox: Ann. Math., 59, 211-218 (1954).
