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107. On Generalized Walsh Fourier Series. I

By Chinami WATARI
Mathematical Institute, T6hoku University, Sendai, Japan

(Comm. by K. KUNUa.I, M.J.., Oct. 12, 1957)

1. We shall state some theorems on generalized Walsh Fourier
series, that is, on Fourier series with respect to the system of the
generalized Walsh functions.

Let {a(n)} be a sequence of integers not less than 2, and put
A(0)--I, A(n)=(0)(1)...(n--1), A(-- n) l/.A(n). The "generalized
Rademacher functions" (t) (n-0, 1, 2,...) are defined as

b(t)-exp (2rrik/a(n))
for t belonging to the left-semiclosed intervals

(kA(--n--1), (k+l)A(--n--1)) k--0, 1,..., A(nff-1)--I
and 5(tff-1)-q(t) for all t.

Now we can define the "generalized Walsh functions" (t)
(n=0, 1, 2,. .). Let

0(t)- 1
and for nl,

%(t)- ..oc-r/

provided that n is expressed in the form

n=a(1)A(n(1) +a(2)A(n(2) -k -k a(r)A(n(r)
where

n(1)>n(2)>... >n(r)>0; O<a(j)<(j) (j--l, 2,..., r).
The functions (t) thus defined form a complete orthonormal

system over the interval (0, 1). If a(n)--2 (n--0, 1, 2,...), the system
reduces to that of Walsh, and the case a(n)-a was studied by H. E.
Chrestenson 1. The general definition seems to have been given
by J. J. Price (cf. [7_), but we have not been able to know the details.

We assume in the sequel that, unless others are stated explicitly,
the sequence {a(n)} is bounded, say a(n)a n-0, 1,2,.... Though
this assumption may seem stringent, it is necessary, in order to obtain
positive results, to confine the "growth" of a(n) under a certain
restriction (see Theorem 4 below).

2. The key theorem in the L’(p>I) theory of Walsh Fourier
series is the following, due to R. E. A. C. Paley

Theorem e. Let f(t) L’(O, 1), f(t) c(t). Then, putting
2n+l_l

f,.(t)- , c(t) (n--O, 1, 2,...), one has
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f’( ) fB [f(t) [P dt <: dt B f(t) dt
=0

where the constants B, B depend only on p.*)
The formally conceivable analogue of Theorem P holds true in

our case, but it does not act so effectively; a "finer decomposition ",
which we propose in the following Theorem 1, would be essential for
applications.

Theorem 1. Let f(t) L’(O, 1) (p> 1), f(t) c,(t) and put

(t)- e%(t)
=a*<-) n--0, 1, 2,

Then we have, if(t) at e0
n=O

The proo o his heorem is somewha more eomplieed hgn

ha o Theorem P, bu runs very elosely. Considering a special egse

in which every 8,j consists o single erm, we deduce immediately
Che ollowing proposition, whieh is generalization o he well-known
inequalities o A. Khinehine.

Corollary. et >O, f(t)
=0

" <
=,,j if(t) dt.B:, if(t) dt

Theorem 1 and a standard argument (see for example [6, the
proof of Theorem VII) tell us that the following theorem is valid.

Theorem 2. Let f(t) L,(0,1) (p>l), f(t) Cn(t) and let
n-1

Sn(t)= C,(t). Then we have

(ii) f(t) (t)

In ease ()= (=0, 1,,...), we can generalize heorems 1
and 2 into the following

Theorem 3. Let >1, --1/<<1--1/

f(t)

Ptti o S,(t)= e,,(t), hefe the mmatio i ete&g ove
u(+1)--1, e have

*) We use throughout the article the letter B with subscripts to denote a constant
(which need not the same in different contexts) depending only on parameters disposed
explicitly.
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f’B,r, f(t)I tr dt Co + .1[ n j(t)]2 tTM dt
n=0 j=

<_5_ " tTM-,, if(t)

(ii) s(t) tTM dt B,r,, f(t) [" dt;

his, for =2, was roved by I. I. Hirsehman [g. His dual
results (see [g, Theorems 8. and 4.1) would remain true for general, but we shall not treat them here.

o show tha our assumption () is no superfluous, we cite
a negative result:

Theorem 4. If () ieeae ith ap, that i, if thee
mbe i>1 eh that (+1)/() fof =0, 1,,..., e
fetio f(t) beloi to evefg Lebege ela (0, 1),

a()--I

and for which ]8,i(t)]2= for all .
=0

3. The Cesgro summability of Walsh Fourier series was proved
by N. J. Fine [3]. Recently S. Yano [10] sharpened this into a
maximal theorem and brought to the case of generalized Walsh Fourier
series. In this connection we give two theorems, the one concerning
summability factors and the other convergenee factors.

Theorem S. Let f(t)eL(O, 1), f(t)c() and le$ 0<v<l.
0

Then, denoting by N)(; f) the n4h (C,--y) mean of the series

we have
.=o(n+)’

(ii) the efie
(+1)

In ghe ease of ()=2 (=0, 1, 2,...), this theorem was roved
by 8. Yano [9.

Theorem 6. Let f(t) e L(O, 1), f(t) e(t). The,

b (t) the -th partial m of the efie
lg(+)’

e have

(i) s X(t) at B if(t)

(ii) the efie olog (+2)
eovee mot everywhere.
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In the case of a(n)=2 (n=0, 1, 2,.’..), this theorem was stated
by R. E. A. C. Paley [6] and proved by S. Yano [9. Our proof of
Theorem 6 is based on a method established by G. H. Hardy and
J. E. Littlewood [4, and requires a modification of a result proved
by G. Sunouchi [8 under a more general form. We refer here to
another treatise 2 of N. J. Fine, where is originally given the
notion of the "dyadic group", which, after suitable modifications, is
indispensable to our proof of Theorem 6.

Added in Proof: Theorem 4 can be ameliorated; firstly, we have only to suppose
the unboundedness of the sequence {(n)}; secondly, an "opposite" proposition holds
for p>2. More precisely, for {(n)} unbounded, we can find a function g(t), belonging

to none of the Lebesgue classes Lp, p> 2, and for which 6n j(t) ]" M for all t.
=0 j=l
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