125. An Example of Kernel of Non-Carleman Type

By Takashi Kasuga

(Comm. by K. Kunugi, m.J.A., Nov. 12, 1957)
In this note, we construct an example of symmetric measurable kernel of non-Carleman type which determines a bounded self-adjoint operator in $L^{2}[0,1]^{1)}$ and has some additional properties stated in the following.

More precisely we construct a function $S(x, y)$ on $[0,1] \times[0,1]$ with the following properties (A), (B), (C), (D), (E), (F):
(A.) $S(x, y) \geqq 0, S(x, y)=S(y, x)$ on $[0,1] \times[0,1]$.
(B) $S(x, y)$ is a Baire's function of the 1st class on $[0,1] \times[0,1]$.
(C) If $f(y) \in L^{2}[0,1], S(x, y) f(y) \in L^{1}[0 \leqq y \leqq 1]^{2)}$ for every $x \in[0,1]$
$-N_{f}$ where N_{f} is a null set depending on $f(y)$.
(D) $\int_{0}^{1} S(x, y) f(y) d y \in L^{2}[0,1]$ if $f(y) \in L^{2}[0,1]$.
(E) The operation H defined for all $f(y) \in L^{2}[0,1]$ by

$$
H: f(y) \rightarrow \int_{0}^{1} S(x, y) f(y) d y
$$

is a bounded self-adjoint operator in $L^{2}[0,1]$.
But
(F) $\quad S(x, y) \notin L^{2}[0 \leqq y \leqq 1]^{2)}$ for any $x \in[0,1]$.
§1. Kernel $K(x, y)$. We define three functions $R(n), P(n), Q(n)$ of integer $n \geqq 0$ by

$$
\begin{array}{cc}
R(0)=0, R(n)=\sum_{s=1}^{n} s^{-1} & \text { for } n \geqq 1 \\
P(n)=R(n)-[R(n)]^{3)} & \text { for } n \geqq 0 \\
Q(0)=0, Q(n)=6 \pi^{-2} \sum_{s=1}^{n} s^{-2} & \text { for } n \geqq 1 .
\end{array}
$$

Then since $0<R(n)-R(n-1) \leqq 1$ for $n \geqq 1$, for $n \geqq 1[R(n)]=$ $[R(n-1)]$ or $[R(n)]=[R(n-1)]+1$ and if $[R(n)]=[R(n-1)]$, then $0 \leqq P(n-1)<P(n)<1$ and if $[R(n)]=[R(n-1)]+1$, then $0 \leqq P(n) \leqq$ $P(n-1)<1$. Also it is well known that $Q(n) \rightarrow 1(n \rightarrow \infty)$.

We define a function $K(x, y)$ on $[0,1] \times[0,1]$ in the following way.

For (x, y) such that $0 \leqq x \leqq 1 \quad Q(n-1) \leqq y<Q(n)(n \geqq 1)$, we put

[^0]$3)[a]$ is the greatest integer not greater than the real number a.
\[

K(x, y)= $$
\begin{cases}n & \text { for } P(n-1) \leqq x \leqq P(n) \\ 0 & \text { otherwise }\end{cases}
$$
\]

if $[R(n-1)]=[R(n)]$,
and we put

$$
K(x, y)= \begin{cases}n & \text { for } 0 \leqq x \leqq P(n) \\ n & \text { for } P(n-1) \leqq x \leqq 1 \\ 0 & \text { otherwise }\end{cases}
$$

if $[R(n-1)]+1=[R(n)]$.
We put $K(x, 1)=0$ for $x \in[0,1]$.
That $K(x, y)$ is thus defined for all $(x, y) \in[0,1] \times[0,1]$, is obvious from the properties of functions $P(n), Q(n), R(n)$.

We can easily verify that $K(x, y)$ is a Baire's function of the 1st class on $[0,1] \times[0,1]$.

We take a $g(x) \in L^{2}[0,1]$ and extend its domain of definition to the whole real line so that $g(x)$ becomes a function of period 1 .

Then $K(x, y) g(x) \in L^{1}[0 \leqq x \leqq 1]^{2)}$ for each $y \in[0,1]$ since $K(x, y)$ $\in M[0 \leqq x \leqq 1]^{2)}$ for each $y \in[0,1]$. Also considering the properties of functions $P(n), Q(n), R(n)$ and the definition of $K(x, y)$, we can easily verify

$$
\begin{gather*}
\int_{0}^{1}\left|\int_{0}^{1} K(x, y) g(x) d x\right|^{2} d y=\sum_{n=1}^{\infty} 6 \pi^{-2} n^{-2}\left|\int_{R(n-1)}^{R(n)} n \cdot g(x) d x\right|^{2} \\
=6 \pi^{-2} \sum_{n=1}^{\infty}\left|\int_{R(n-1)}^{R(n)} g(x) d x\right|^{2} \\
\leqq 6 \pi^{-2} \sum_{n=1}^{\infty}(R(n)-R(n-1)) \int_{R(n-1)}^{R(n)}|g(x)|^{2} d x \\
=6 \pi^{-1} \sum_{n=1}^{\infty} n^{-1} \int_{R(n-1)}^{R(n)}|g(x)|^{2} d x \tag{1}
\end{gather*}
$$

We have

$$
\begin{gather*}
6 \pi^{-2} \sum_{n=1}^{M} n^{-1} \int_{R(n-1)}^{R(n)}|g(x)|^{2} d x \\
=6 \pi^{-2} \sum_{n=1}^{M} n^{-1}\left(\int_{0}^{R(n)}|g(x)|^{2} d x-\int_{0}^{R(n-1)}|g(x)|^{2} d x\right) \\
=6 \pi^{-2}\left(M^{-1} \int_{0}^{R(M)}|g(x)|^{2} d x+\sum_{n=1}^{M-1}\left(n^{-1}-(n+1)^{-1}\right) \int_{0}^{R, n)}|g(x)|^{2} d x\right) \\
=6 \pi^{-2}\left(M^{-1} \int_{0}^{R(M)}|g(x)|^{2} d x+\sum_{n=1}^{M-1}\{n(n+1)\}^{-1} \int_{0}^{R(n)}|g(x)|^{2} d x\right) . \tag{2}
\end{gather*}
$$

If we put $W(n)=\left[\sum_{s=1}^{n} s^{-1}\right]^{3)}=[R(n)]$ for integer $n \geqq 1$, then $W(n)$ $=O(\log n)$ for $n \rightarrow \infty$.
Hence

$$
\begin{gather*}
\sum_{n=1}^{M-1}\{n(n+1)\}^{-1} \int_{0}^{R(n)}|g(x)|^{2} d x \leqq \sum_{n=1}^{M-1}\{n(n+1)\}^{-1}\{W(n)+1\} \\
\times \int_{0}^{1}|g(x)|^{2} d x=O(1) \quad \text { for } M \rightarrow \infty \tag{3}
\end{gather*}
$$

and

$$
\begin{gather*}
M^{-1} \int_{0}^{R(M)}|g(x)|^{2} d x \leqq M^{-1}\{W(M)+1\} \int_{0}^{1}|g(x)|^{2} d x=o(1) \\
\text { for } M \rightarrow \infty . \tag{4}
\end{gather*}
$$

By (1), (2), (3) and (4), we get

$$
\int_{0}^{1}\left|\int_{0}^{1} K(x, y) g(x) d x\right|^{2} d y<+\infty
$$

Therefore

$$
\begin{equation*}
\int_{0}^{1} K(x, y) g(x) d x \in L^{2}[0,1] \tag{5}
\end{equation*}
$$

for any $g(x) \in L^{2}[0,1]$.
If $f(y), g(x) \in L^{2}[0,1]$, then by (5) and $K(x, y) \geqq 0$,

$$
\begin{gathered}
\int_{0}^{1} \int_{0}^{1}|K(x, y) f(y) g(x)| d x d y \\
=\int_{0}^{1}\left(\int_{0}^{1} K(x, y)|g(x)| d x\right)|f(y)| d y<+\infty .
\end{gathered}
$$

Hence by a theorem of Fubini and a theorem of Banach, ${ }^{4)}$ if $f(y) \in L^{2}[0,1]$, then $K(x, y) f(y) \in L^{1}[0 \leqq y \leqq 1]$ for all $x \in[0,1]-N_{f}$ where N_{f} is a null set depending on $f(x)$, and if we define two operators T, U by

T: $\quad g(x) \rightarrow \int_{0}^{1} K(x, y) g(x) d x$ for all $g(x) \in L^{2}[0,1]$
$U: f(y) \rightarrow \int_{0}^{1} K(x, y) f(y) d y$ for all $f(y) \in L^{2}[0,1]$,
then both T and U are bounded linear operators in $L^{2}[0,1]$ (that is, bounded linear transformations from $L^{2}[0,1]$ into $\left.L^{2}[0,1]\right)$ and $U=T^{*}$ (adjoint operator of T).
§2. We shall prove in the following that $K(x, y) \notin L^{2}[0 \leqq y \leqq 1]$ for any $x \in[0,1]$.

We take a real number x such that $0 \leqq x<1$. Then for any integer $m \geqq 0$, there is an integer $n_{0} \geqq 1$ such that $R\left(n_{0}-1\right) \leqq x+m$ $\leqq R\left(n_{0}\right)$, since $R(n) \rightarrow+\infty(n \rightarrow \infty)$ and $R(n-1)<R(n)$ for any integer $n \geqq 1$. By the definitions of $P(n)$ and $R(n), P(n)=R(n)-[R(n)]$ and $0<R(n)-R(n-1) \leqq 1$ for $n \geqq 1$. Hence for the above n_{0}, if $\left[R\left(n_{0}\right)\right]$
4) Cf. S. Banach [1, pp. 86-89, 104-105].
$=\left[R\left(n_{0}-1\right)\right]$, then $P\left(n_{0}-1\right) \leqq x \leqq P\left(n_{0}\right)$ and if $\left[R\left(n_{0}\right)\right]=\left[R\left(n_{0}-1\right)\right]+1$, then $0 \leqq x \leqq P\left(n_{0}\right)$ or $P\left(n_{0}-1\right) \leqq x \leqq 1$. Also $n_{0} \rightarrow+\infty(m \rightarrow \infty)$. Therefore by the definition of $K(x, y)$, for each x such that $0 \leqq x<1$ there are infinitely many integers $n_{0} \geqq 1$ such that $K(x, y)=n_{0}$ for $Q\left(n_{0}-1\right)$ $\leqq y<Q\left(n_{0}\right)$.

On the other hand, there are infinitely many integers $n \geqq 1$ such that $[R(n)]=[R(n-1)]+1$ since $R(n) \rightarrow+\infty \quad(n \rightarrow \infty)$ and $0<R(n)$ $-R(n-1) \leqq 1$ for $n \geqq 1$. Hence by the definition of $K(x, y)$, there are infinitely many integers $n_{0} \geqq 1$ such that $K(1, y)=n_{0}$ for $Q\left(n_{0}-1\right) \leqq y$ $<Q\left(n_{0}\right)$.

Therefore for each x such that $0 \leqq x \leqq 1$, there are infinitely many integers $n_{0} \geqq 1$ such that $K(x, y)=n_{0}$ for $Q\left(n_{0}-1\right) \leqq y<Q\left(n_{0}\right)$. For such n_{0},

$$
\int_{Q\left(n_{0}-1\right)}^{Q\left(n_{0}\right)}|K(x, y)|^{2} d y=n_{0}^{2}\left\{Q\left(n_{0}\right)-Q\left(n_{0}-1\right)\right\}=n_{0}^{2} \times 6 \pi^{-2} \times n_{0}^{-2}=6 \pi^{-2} .
$$

Hence if $x \in[0,1]$,

$$
\int_{0}^{1}|K(x, y)|^{2} d y=\sum_{n=1}^{\infty} \int_{Q(n-1)}^{Q(n)}|K(x, y)|^{2} d y=+\infty
$$

§ 3. We put for $(x, y) \in[0,1] \times[0,1]$

$$
S(x, y)=K(x, y)+K(y, x)
$$

The function $S(x, y)$ has obviously the property (A), since $K(x, y) \geqq 0$ on $[0,1] \times[0,1]$. That the function $S(x, y)$ has properties (B), (C), (D), and (E) can be easily concluded from the properties of kernel $K(x, y)$ already proved. Also the function $S(x, y)$ has property (F), since $K(y, x) \in L^{2}[0 \leqq y \leqq 1]$ for any $x \in[0,1]$ and $K(x, y) \notin L^{2}[0 \leqq y \leqq 1]$ for any $x \in[0,1]$ as we have already proved.

Reference

[1] S. Banach: Théorie des opérations linéaires, Warszawa (1932).

[^0]: 1) $M[0,1], L[0,1], L^{2}[0,1]$ are the classes of bounded measurable, integrable, square integrable functions on the closed interval $[0,1]$ respectively.
 2) $f(x, y) \in L^{2}[0 \leqq x \leqq 1]$ or $f(x, y) \in L^{2}[0 \leqq y \leqq 1]$ means that $f(x, y)$ as a function of x or y belongs to $L^{2}[0,1]$ for a particular value of y or x. Similarly for other function classes defined in 1).
