150. Supplementary Note on Free Algebraic Systems

By Tsuyoshi FUJIWARA

Department of Mathematics, Yamaguchi University (Comm. by K. SHODA, M.J.A., Dec. 12, 1957)

In the previous note,¹⁾ we have defined the free *P*-algebraic systems which are the generalization of the free *A*-algebraic systems in the sense of K. Shoda.²⁾ And we have shown the necessary and sufficient condition for the existence of the free *P*-algebraic systems, and the other results. In this note, we shall show a relation between the free algebraic system in the sense of G. Birkhoff³⁾ and the free *A*-algebraic system (Theorem 1), and shall show a necessary and sufficient condition for the existence of the Birkhoff's free algebraic systems⁴⁾ (Theorem 2).

Let V be a system of single-valued compositions—hereafter an algebraic system always means an algebraic system with respect to V. An algebraic system \mathfrak{A} is said to satisfy the composition-identity $p(x_1, \dots, x_r) = q(x_1, \dots, x_r)$, if $p(a_1, \dots, a_r) = q(a_1, \dots, a_r)$ for every r elements a_1, \dots, a_r in \mathfrak{A} . Let A be a family consisting of composition-identities. If an algebraic system \mathfrak{A} satisfies all the composition-identities system. We say that \mathfrak{A} satisfies A or that \mathfrak{A} is an A-algebraic system. We denote by $\mathbf{K}(A)$ the class consisting of all the A-algebraic system with its free generator system $\{a_{\mu} \mid \mu \in M\}$.

Let **K** be an arbitrary class consisting of algebraic systems. An algebraic system contained in the class **K** is called a **K**-algebraic system. A composition-identity $p(x_1, \dots, x_r) = q(x_1, \dots, x_r)$ is called a defining composition-identity of **K**, if every **K**-algebraic system \mathfrak{A} satisfies the composition-identity $p(x_1, \dots, x_r) = q(x_1, \dots, x_r)$. A **K**-algebraic system \mathfrak{F} with a generator system $\{f_{\mu} \mid \mu \in M\}$ is called a strongly free **K**-algebraic system with its free generator system $\{f_{\mu} \mid \mu \in M\}$, and is denoted by $SF(\{f_{\mu} \mid \mu \in M\}, \mathbf{K})$, if, for every set $\{a_{\mu} \mid \mu \in M\}$ of elements in any **K**-algebraic system \mathfrak{A} , the mapping $f_{\mu} \to a_{\mu}$ can be extended to a homomorphism of \mathfrak{F} into \mathfrak{A} .

Theorem 1. Let **K** be a class of algebraic systems. If there exists a strongly free **K**-algebraic system $SF(\{f_{\mu} \mid \mu \in M\}, \mathbf{K})$, then $SF(\{f_{\mu} \mid \mu \in M\}, \mathbf{K})$ is isomorphic to a free A-algebraic system $F(\{a_{\mu} \mid \mu \in M\}, \mathbf{K})$

¹⁾ T. Fujiwara: Note on free algebraic systems, Proc. Japan Acad., 32 (1956).

²⁾ K. Shoda: Allgemeine Algebra, Osaka Math. J., 1 (1949).

³⁾ G. Birkhoff: Lattice Theory, Amer. Math. Soc. Coll. Publ., 25 (1948).

⁴⁾ In this note, a free algebraic system in the sense of G. Birkhoff is simply called a Birkhoff's free algebraic system or a strongly free algebraic system.

 $\mu \in M$, A) by the mapping $a_{\mu} \rightarrow f_{\mu}$, where A is the family of all the defining composition-identities of the class **K**.

Proof. Clearly $SF(\{f_{\mu} \mid \mu \in M\}, \mathbf{K})$ is an A-algebraic system, since every **K**-algebraic system is an A-algebraic system. Hence there exists a homomorphism φ of $F(\{a_{\mu} \mid \mu \in M\}, A)$ onto $SF(\{f_{\mu} \mid \mu \in M\}, \mathbf{K})$, which is an extension of the mapping $a_{\mu} \rightarrow f_{\mu}$. On the other hand, let a relation $p(f_{\mu, \gamma}, \cdots, f_{\mu_{\tau}}) = q(f_{\mu_{1}}, \cdots, f_{\mu_{\tau}})$ hold in $SF(\{f_{\mu} \mid \mu \in M\}, \mathbf{K})$. Then the composition-identity $p(x_{1}, \cdots, x_{\tau}) = q(x_{1}, \cdots, x_{\tau})$ is contained in the family A, because it is obtained from the definition of the strongly free **K**-algebraic system that every **K**-algebraic system satisfies the composition-identity $p(x_{1}, \cdots, x_{\tau}) = q(x_{1}, \cdots, x_{\tau})$. Hence there exists a homomorphism ψ of $SF(\{f_{\mu} \mid \mu \in M\}, \mathbf{K})$ onto $F(\{a_{\mu} \mid \mu \in M\}, A)$, which is an extension of the mapping $f_{\mu} \rightarrow a_{\mu}$. Thus, it is easy to see from the existence of the two homomorphisms φ and ψ that $SF(\{f_{\mu} \mid \mu \in M\}, \mathbf{K})$ is isomorphic to $F(\{a_{\mu} \mid \mu \in M\}, A)$ by the mapping $a_{\mu} \rightarrow f_{\mu}$. This completes the proof.

Let K be an arbitrary class of algebraic systems, and let \mathfrak{A} be an algebraic system. If, for each generator system $\{a_{\mu} \mid \mu \in M\}$ of \mathfrak{A} , there exists a K-algebraic system \mathfrak{B} generated by its generator system $\{b_{\mu} \mid \mu \in M\}$ with the same suffix-set M such that the mapping $b_{\mu} \rightarrow a_{\mu}$ can be extended to a homomorphism of \mathfrak{B} onto \mathfrak{A} , we say that \mathfrak{A} is in contact with K. The class consisting of all the algebraic systems in contact with K is called the closure of K, and denoted by \overline{K} . If $K = \overline{K}$, we say that K is closed.

Theorem 2. Let \mathbf{K} be a class of algebraic systems. Then, in order that, for any cardinal number \mathfrak{a} , there exists a strongly free \mathbf{K} -algebraic system with a free generator system consisting of \mathfrak{a} generators, it is necessary and sufficient that there exists a family A of composition-identities such that the closure $\overline{\mathbf{K}}$ is equal to the class $\mathbf{K}(A)$ of all the A-algebraic systems.

Proof of necessity. Let A be the family consisting of all the defining composition-identities of the class K. Hereafter we shall prove that the closure \overline{K} is equal to K(A). Now the class K is clearly contained in K(A), since every K-algebraic system is an A-algebraic system. Hence the closure \overline{K} is contained in the class K(A), because K(A) is closed. On the other hand, let \mathfrak{B} be an algebraic system in the class K(A), and let $\{b_{\mu} \mid \mu \in M\}$ be any generator system of \mathfrak{B} . Then, \mathfrak{B} is homomorphic to a free A-algebraic system $F(\{a_{\mu} \mid \mu \in M\}, A)$ by the mapping $a_{\mu} \rightarrow b_{\mu}$. Hence it follows from Theorem 1 that \mathfrak{B} is homomorphic to a strongly free K-algebraic system $SF(\{f_{\mu} \mid \mu \in M\}, K)$ by the mapping $f_{\mu} \rightarrow b_{\mu}$. Therefore it is easy to see from the definition of the closure that \mathfrak{B} is contained in \overline{K} . Hence the

class K(A) is contained in \overline{K} , and hence the closure \overline{K} is equal to the class K(A).

Suppose that there exists a family A of Proof of sufficiency. composition-identities such that the closure K is equal to the class K(A). Then, for any cardinal number a, a free A-algebraic system $F(\{a_{\mu} \mid \mu \in M(\mathfrak{a})\}, A)^{5}$ is clearly a strongly free **K**-algebraic system with its free generator system $\{a_{\mu} \mid \mu \in M(\mathfrak{a})\}$. Hence a *K*-algebraic system \mathfrak{B} which is isomorphic to $F(\{a_{\mu} \mid \mu \in M(\mathfrak{a})\}, A)$ is a strongly free K-algebraic system with a free system of a generators. Hereafter we shall prove the existence of such a K-algebraic system \mathfrak{B} . Since $F(\{a_{\mu} \mid \mu \in M(\mathfrak{a})\}, A)$ is contained in the closure \overline{K} , there exists a K-algebraic system \mathfrak{B} with its generator system $\{b_{\mu} \mid \mu \in M(\mathfrak{a})\}$ such that the mapping $b_{\mu} \rightarrow a_{\mu}$ can be extended to a homomorphism φ of \mathfrak{B} onto $F(\{a_{\mu} \mid \mu \in M(\mathfrak{a})\}, A)$. On the other hand, there exists a homomorphism ψ of $F(\{a_{\mu} \mid \mu \in M(\mathfrak{a})\}, A)$ onto \mathfrak{B} , which is an extension of the mapping $a_{\mu} \rightarrow b_{\mu}$, since \mathfrak{B} is an A-algebraic system. Hence \mathfrak{B} is clearly isomorphic to $F(\{a_{\mu} \mid \mu \in M(\mathfrak{a})\}, A)$, from the existence of the two homomorphisms φ and ψ . This completes the proof.

The following corollary can be easily obtained.

Corollary. Let K be a class of algebraic systems. Then, the following three conditions are equivalent:

(a) There exists a family A of composition-identities such that the class K is equal to the class K(A) of all the A-algebraic systems.

(b) For any cardinal number a, there exists a strongly free **K**-algebraic system with a free system of a generators, and every homomorphic image of any **K**-algebraic system is a **K**-algebraic system.

(c) For any cardinal number a, there exists a strongly free **K**-algebraic system with a free system of a generators, and the class **K** is closed.