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In the present paper, we will study on the projection of norm
one from any W*-algebra onto its subalgebra. By a projection of
norm one we mean a projection mapping from any Banach space onto
its subspace whose norm is one. At first, we find some properties of
a projection of norm one from a C*-algebra to its C*-subalgebra.
These properties turn out to have some interesting applications to the
recent theory of W*-algebras, which we shall show in the following.

Through our discussions we denote the dual of a Banach space M
and the second dual by M’ and M", respectively.

Theorem 1. Let M be a C*-algebra with a unit and N its C*-
subalgebra. If r is a projection of norm one from M to N, then

1. r is order preserving, 2. r(axb)--ar(x)b for all a, beN,
3. r(x).r(x) r(x.x) for all x e M.
Proof. Consider the second dual of M and N, M" and N". M"

is a W*-algebra containing M as a a-weakly dense C*-subalgebra by
Sherman’s theorem (cf. [14, 15), and N" may be considered as a
W*-subalgebra of M", for it is identified with the bipolar of N in
M". The second transpose of r, the extension of r to M", is a
projection of norm one from M" to N". Thus, it suffices to prove
the theorem when M is a W*-algebra and N a W*-subalgebra of M.
As in [5, Lemrna 8 we can show that r is ,-preserving and order
preserving, which one can easily see since r is of norm one.

Next, take a projection e of N and a eM, positive and ilai[_<1.
We have e_> eae, whence e_> r(eae), so that r(eae)- er(eae)e. Thus,
we have r(exe)-er(exe)e for all xeM. Take an element xM, ltxlt_l.
Put r(ex(1--e))-x’. Then

il ex(1-e)+ne ]i-ll {ex(1-e)+ne}[(1-e)x.e+ne} il
]i ex(1-e)x.e/ne ]]/ <_ (1 +n)/ for all integers n.

On the other hand, if ex’e+ ex’*e 0 we may suppose without loss of
2

generality that this element has a positive spectrum >0. Then,

il x’Ene ]]- ii ex’e+ ne +ex’(1--e)E(1--e)x’eE(1--e)x’(1--e) [[

->il e(x’+nl)e l]>[ 2
+ne i>2+n- for all n.

Therefore, [lx’/neli>_/n>(l+n)/>_]iex(1--e)+ne[[ for a sufficient-
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ly large n, which is a contradiction. Thus ex’e+ex’*e--0. A slight
2

modification leads us to iex’*e--iex’e =0. We get, ex’e-O. For
2

ex(1--e)+n(1--e) we proceed the same computation and get, (1--e)x’
(-e)-0.

Now suppose (1--e)x’e O. We have,

![ x’ +n(1--e)x’e !!-II ex’(1--e)+(n+ 1)(1--e)x’e il
-max{ll ex’(1--e)!1, (n/ 1)!! (1-)x’ il}
=(n+ 1),i (z-)x’ ii for a sufficiently large n.

On the other hand,

ii x’+n(1--e)x’e ![ -[[ ex(1--e)+n(1--e)x’e ii
=max[! ex(1--e) il, n il (1--e)x’e it}
n ![ (1-- e)x’e [i for a sufficiently large n.

This is a contradiction, which yields (1--e)x’e--O. Thus we have
x’--ex’(1--e). Since r(x)- r(exe)+r(ex(1--e))+r((1-e)xe)+r((1--e)
x(1--e)), we have er(x)(1--e)-er(ex(1--e))(1--e)--r(ex(1--e)), and

er(x)e-er(exe)e-r(exe). Therefore r(ex)--er(x). We have r(ax)
=ar(x) for all a eN, because N is a W*-subalgebra of M. Since
these arguments are symmetric we get the conclusion 2

From 2 3 is easily shown: that is,
0 <_ E(x- (x)),(x-(x)) (x,x-x,(x) (x),x+(x),(x))

(x,x)-(x),(x).
By help of Theorem I we can ,prove the following theorem on

W*-algebra which is proved recently by S. Sakai [12.
Theorem 2. Suppose a C*-algebra M is the adjoint space of a

Banach space F, then it is a W*-algebra and the topology 6(M, F)
of M is the a-weak topology.

Proof. By [2 there exists a projection r of norm one from
M" to M whose kernel is the polar of F in M’. Then, by Theorem
1, a r-(0)br-(0) ior all a, beM. Since M is a a-weakly dense
C*-subalgebra of M", we have

xr-(0)y r- (0) for all x, y e M"
Thus r-(0) is a a-weakly closed ideal of M" and r is a .-homo-
morphism from M" onto M. Therefore M is isomorphic to M’/r-l(O)
which is a W*-algebra, that is, M is a W*-algebra. The a-weak
topology of a W*-algebra M’/r-(O) is the quotient topology of the
a-weak topology of M" which is equivalent to a(M’,M’)-topology
(cf. [15). Therefore the (M, F)-topology of M is the a-weak topol-
ogy of Mby 1.

Combining this result with that of J. Dixmier [2 we get
Corollary. A C*-algebra M is a W*-algebra if and only if there

exists a projection of norm one from M’, the second dual of M, to
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M whose kernel is a(M", M’)-closed.
Next, we apply this method to the following
Theorem 3 (cf. [13, Theorem 2). Let M be a W*-algebra, N a

C*-algebra and an algebraic isomorphism from M onto N, then N
is a W*-algebra and is a-weakly bicontinuous.

Proof. By [11 is uniformly continuous, so that it is bicon-
tinuous by the classical theorem of Banach space. Let M" and N"
be the second duals of M and N, then induces a a-weakly bicon-
tinuous isomorphism between two W*-algebras M" and N" which is

nothing but the second transpose of , . Since M is a W*-algebra,
there exists a projection r of norm one described in the previous

-1

corollary. Put r--cr0 r is a projection from N" to N and

ri-(0) r(0). Therefore r;(0) is a(N", N’)-closed. Moreover
r(0) is an ideal since r(0) is an ideal of M" as it is seen in the
proof of Theorem 2. Hence N is .-isomorphic to a W*-algebra
N"/cr(O), so that N is a W*-algebra. Now let or;’(0) be the polar
of ri-(0) in N’, then ri-(0) may be regarded as N., the space of
all a-weakly continuous linear functionals on N, by Theorem 2. Denote
the polar of rj(0) in M’ by r(0), we have r(0)--M.. Then

((’i-(O)), ’5-(0)}- (-i-(O), --(0)}- (-i-(O), ri-(O)} 0, and
-1

o, o,,
Therefore is a-weakly bieontinuous.

Theorem . Let M be a W*-algebra, N a C*-subalgebra of M and
r a projection of norm one from M to N, then

1. N is a W*-algebra if r-(O)N is ,r-weakly closed where
is the a-weak closure of N in M,
2. N is a W*-subalgebra if r is faithful on positive elements

in M.
Proof. Since r(N)-N, it suffices to consider the restriction of

r to N. By Corollary of Theorem 2 there exists a projection r0 of
norm one from N" to N. Consider the restriction of r0 to N" which
is a W*-subalgebra of N" as shown in the proof of Theorem 1. By
the proof of Theorem 2, we see that r0 is a a-weakly continuous

-homomorphism of N" onto N, so that r0(N") is a-weakly closed in

N containing N (el. 4). Hence r(N")--N. Put r--rr0 on N",
then r is a projection of norm one from N" to N: moreover, ri-(0)
=r(r-(0)N)N", which is a-weakly closed by the a-weak topol-
ogy in N", that is, a(N", N’)-topology. Therefore N is a W*-algebra,
which proves 1.
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Next, if {a} is a bounded increasing directed set of self-adjoint
elements of N, there exists an element a0 in M such that a0--sup a.
Since r is order preserving, a simple computation shows r(ao)--sup a
in N. Hence, we have r(a0)_>a0, that is, r(a0)--a0_>0. Then, r(r(ao)
--a0)--0 which implies r(ao)--ao-O since r is faithful on positive
elements. Therefore N is a C*-algebra in which the supremum of
each bounded increasing directed set in N coincides with that in a
W*-algebra M. Hence N is a W*-subalgebra of M owing to the
result due to Kadison F6. This proves 2.

Remark. It is to be noticed that the first half part of Theorem
4 does not necessarily hold without any additional assumption. For
example, take a commutative A W*-algebra N whose spectrum space
is not a hyperstonean space. N is a C*-algebra on a Hilbert space
H. Let M be the a-weak closure of N on H. M is a commutative W*-
algebra. Denote the self-adjoint parts of M and N by M and N,
respectively. By 9, 10 there exists a projection of norm one from

M onto N. Then we can extend this projection linearly to a pro-
jection from M to N without increasing its norm. Thus, we have a
projection of norm one from M onto N and yet N is not a W*-algebra

Es-1).
In the case of A W*-algebra, we have
Theorem 5. Let M be an A W*-algebra, N its C*-subalgebra and

r a projection of norm one from M to N, then
1. N is an A W*-algebra,
2. N is an A W*-subalgebra if r is faithful on positive elements

in M.
Proof. Let S be an arbitrary set in N and denote by R0 and R

the right annihilator in M and N, respectively. We have Ro--eM
for some projection e. Now, by Theorem 1, Se-O implies r(Se)-Sr(e)
=0. Hence there exists an element a eM such that r(e)--ea. We
get, therefore,

r(e)’- r(e)r(e) r(er(e)) r(rr(e)) rr(e),
so that r(e) is a projection in N for r(e) is positive. Besides, we have
r(e)NCR. On the other hand, r(e)Nr(e)R-r(eR)--r(R)--R. We
get R--r(e)N. That is, N is an A W*-algebra (cf. F8]).

To prove the second half of the theorem, we consider (e), a family
of orthogonal projections in N. Since N is an A W*-algebra by 1,
there exists a projection e in N such that e-supe in N. On the

other hand we have a projection e0 in M such that e0-sup e in M.

And the sme computation as in the proof of 2 in Theorem 4 shows
that r(e0)--e-e0 if r is faithful on positive elements in M. Thus
N is an A W*-subalgebra of M (cf. [7]).
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