608 [Vol. 33, ## 145. On the Projection of Norm One in W*-algebras ## By Jun Tomiyama Mathematical Institute, Tôhoku University (Comm. by K. Kunugi, M.J.A., Dec. 12, 1957) In the present paper, we will study on the projection of norm one from any W^* -algebra onto its subalgebra. By a projection of norm one we mean a projection mapping from any Banach space onto its subspace whose norm is one. At first, we find some properties of a projection of norm one from a C^* -algebra to its C^* -subalgebra. These properties turn out to have some interesting applications to the recent theory of W^* -algebras, which we shall show in the following. Through our discussions we denote the dual of a Banach space M and the second dual by M' and M'', respectively. Theorem 1. Let M be a C*-algebra with a unit and N its C*-subalgebra. If π is a projection of norm one from M to N, then - 1. π is order preserving, 2. $\pi(axb) = a\pi(x)b$ for all $a, b \in N$, - 3. $\pi(x)*\pi(x) \leq \pi(x*x)$ for all $x \in M$. Proof. Consider the second dual of M and N, M'' and N''. M'' is a W^* -algebra containing M as a σ -weakly dense C^* -subalgebra by Sherman's theorem (cf. [14, 15]), and N'' may be considered as a W^* -subalgebra of M'', for it is identified with the bipolar of N in M''. The second transpose of π , the extension of π to M'', is a projection of norm one from M'' to N''. Thus, it suffices to prove the theorem when M is a W^* -algebra and N a W^* -subalgebra of M. As in [5, Lemma 8] we can show that π is *-preserving and order preserving, which one can easily see since π is of norm one. Next, take a projection e of N and $a \in M$, positive and $||a|| \le 1$. We have $e \ge eae$, whence $e \ge \pi(eae)$, so that $\pi(eae) = e\pi(eae)e$. Thus, we have $\pi(exe) = e\pi(exe)e$ for all $x \in M$. Take an element $x \in M$, $||x|| \le 1$. Put $\pi(ex(1-e)) = x'$. Then $$\begin{aligned} &|| ex(1-e) + ne || = || \{ex(1-e) + ne\} \{(1-e)x * e + ne\} ||^{1/2} \\ &= || ex(1-e)x * e + n^2e ||^{1/2} \le (1+n^2)^{1/2} \text{ for all integers } n. \end{aligned}$$ On the other hand, if $\frac{ex'e+ex'^*e}{2}{ eq}$ \pm 0 we may suppose without loss of generality that this element has a positive spectrum $\lambda > 0$. Then, $$\begin{aligned} || \ x' + ne \ || &= || \ ex'e + ne + ex'(1-e) + (1-e)x'e + (1-e)x'(1-e) \ || \\ &\geq || \ e(x'+nl)e \ || \geq \left| \left| \frac{ex'e + ex'*e}{2} + ne \right| \right| \geq \lambda + n \ \ \text{for all} \ \ n. \end{aligned}$$ Therefore, $||x'+ne|| \ge \lambda + n > (1+n^2)^{1/2} \ge ||ex(1-e)+ne||$ for a sufficient- ly large n, which is a contradiction. Thus $\frac{ex'e+ex'*e}{2}=0$. A slight modification leads us to $\frac{iex'*e-iex'e}{2}=0$. We get, ex'e=0. For ex(1-e)+n(1-e) we proceed the same computation and get, (1-e)x'(1-e)=0. Now suppose $(1-e)x'e \neq 0$. We have, $$||x'+n(1-e)x'e|| = ||ex'(1-e)+(n+1)(1-e)x'e||$$ = $\max\{||ex'(1-e)||, (n+1)||(1-e)x'e||\}$ = $(n+1)||(1-e)x'e||$ for a sufficiently large n . On the other hand, $$||x'+n(1-e)x'e|| \le ||ex(1-e)+n(1-e)x'e||$$ = $\max\{||ex(1-e)||, n||(1-e)x'e||\}$ = $n||(1-e)x'e||$ for a sufficiently large n . This is a contradiction, which yields (1-e)x'e=0. Thus we have x'=ex'(1-e). Since $\pi(x)=\pi(exe)+\pi(ex(1-e))+\pi((1-e)xe)+\pi((1-e))$ $\cdot x(1-e)$, we have $e\pi(x)(1-e)=e\pi(ex(1-e))(1-e)=\pi(ex(1-e))$, and $e\pi(x)e=e\pi(exe)e=\pi(exe)$. Therefore $\pi(ex)=e\pi(x)$. We have $\pi(ax)=a\pi(x)$ for all $a\in N$, because N is a W^* -subalgebra of M. Since these arguments are symmetric we get the conclusion 2° . From 2° , 3° is easily shown: that is, $$0 \le \pi \left[(x - \pi(x)) * (x - \pi(x)) \right] = \pi(x * x - x * \pi(x) - \pi(x) * x + \pi(x) * \pi(x))$$ $$= \pi(x * x) - \pi(x) * \pi(x).$$ By help of Theorem 1 we can prove the following theorem on W^* -algebra which is proved recently by S. Sakai [12]. Theorem 2. Suppose a C^* -algebra M is the adjoint space of a Banach space F, then it is a W^* -algebra and the topology $\sigma(M, F)$ of M is the σ -weak topology. Proof. By [2] there exists a projection π of norm one from M'' to M whose kernel is the polar of F in M''. Then, by Theorem 1, a $\pi^{-1}(0)b \subset \pi^{-1}(0)$ for all $a, b \in M$. Since M is a σ -weakly dense C^* -subalgebra of M'', we have $$x\pi^{-1}(0)y \subset \pi^{-1}(0)$$ for all $x, y \in M''$. Thus $\pi^{-1}(0)$ is a σ -weakly closed ideal of M'' and π is a *-homomorphism from M'' onto M. Therefore M is isomorphic to $M''/\pi^{-1}(0)$ which is a W^* -algebra, that is, M is a W^* -algebra. The σ -weak topology of a W^* -algebra $M''/\pi^{-1}(0)$ is the quotient topology of the σ -weak topology of M'' which is equivalent to $\sigma(M'', M')$ -topology (cf. [15]). Therefore the $\sigma(M, F)$ -topology of M is the σ -weak topology of M by $\lceil 1 \rceil$. Combining this result with that of J. Dixmier [2] we get Corollary. A C^* -algebra M is a W^* -algebra if and only if there exists a projection of norm one from M'', the second dual of M, to M whose kernel is $\sigma(M'', M')$ -closed. Next, we apply this method to the following Theorem 3 (cf. [13, Theorem 2]). Let M be a W^* -algebra, N a C^* -algebra and ϕ an algebraic isomorphism from M onto N, then N is a W^* -algebra and is σ -weakly bicontinuous. Proof. By [11] ϕ is uniformly continuous, so that it is bicontinuous by the classical theorem of Banach space. Let M'' and N'' be the second duals of M and N, then ϕ induces a σ -weakly bicontinuous isomorphism between two W^* -algebras M'' and N'' which is nothing but the second transpose of ϕ , $\widetilde{\phi}$. Since M is a W^* -algebra, there exists a projection π_0 of norm one described in the previous corollary. Put $\pi_1 = \phi \pi_0^{\widetilde{\phi}}$: π_1 is a projection from N'' to N and $\pi_1^{-1}(0) = \widetilde{\phi} \pi_0^{-1}(0)$. Therefore $\pi_1^{-1}(0)$ is $\sigma(N'', N')$ -closed. Moreover $\pi_1^{-1}(0)$ is an ideal since $\pi_0^{-1}(0)$ is an ideal of M'' as it is seen in the proof of Theorem 2. Hence N is *-isomorphic to a W^* -algebra $N''/\pi_1^{-1}(0)$, so that N is a W^* -algebra. Now let $\pi_1^{-1}(0)^0$ be the polar of $\pi_1^{-1}(0)$ in N', then $\pi_1^{-1}(0)^0$ may be regarded as N_* , the space of all σ -weakly continuous linear functionals on N, by Theorem 2. Denote the polar of $\pi_0^{-1}(0)$ in M' by $\pi_0^{-1}(0)^0$, we have $\pi_0^{-1}(0)^0 = M_*$. Then $\widetilde{\phi}(\pi_1^{-1}(0)^0)$, $\pi_0^{-1}(0) = \langle \pi_1^{-1}(0)^0 = \pi_1^{-1}(0) \rangle = 0$, and $$\langle \widetilde{\phi}(\pi_1^{-1}(0)^0), \ \pi_0^{-1}(0) \rangle = \langle \pi_1^{-1}(0)^0, \ \widetilde{\phi} \ \pi_0^{-1}(0) \rangle = \langle \pi_1^{-1}(0)^0, \ \pi_1^{-1}(0) \rangle = 0, \text{ and } \\ \langle \widetilde{\phi}^{-1}(\pi_0^{-1}(0)^0), \ \pi_1^{-1}(0) \rangle = \langle \pi_0^{-1}(0)^0, \ \widetilde{\phi}^{-1}\pi_1^{-1}(0) \rangle = \langle \pi_0^{-1}(0)^0, \ \widetilde{\phi}^{-1}\pi_1^{-1}(0) \rangle = 0.$$ Therefore ϕ is σ -weakly bicontinuous. Theorem 4. Let M be a W^* -algebra, N a C^* -subalgebra of M and π a projection of norm one from M to N, then - 1°. N is a W*-algebra if $\pi^{-1}(0) \cap \overline{N}$ is σ -weakly closed where \overline{N} is the σ -weak closure of N in M, - 2° . N is a W*-subalgebra if π is faithful on positive elements in M. Proof. Since $\pi(\overline{N}) = N$, it suffices to consider the restriction of π to N. By Corollary of Theorem 2 there exists a projection π_0 of norm one from N'' to N. Consider the restriction of π_0 to N'' which is a W^* -subalgebra of N'' as shown in the proof of Theorem 1. By the proof of Theorem 2, we see that π_0 is a σ -weakly continuous *-homomorphism of \overline{N}'' onto N, so that $\pi_0(N'')$ is σ -weakly closed in \overline{N} containing N (cf. [4]). Hence $\pi(N'') = \overline{N}$. Put $\pi_1 = \pi \pi_0$ on N'', then π_1 is a projection of norm one from N'' to N: moreover, $\pi_1^{-1}(0) = \pi_0^{-1}(\pi^{-1}(0) \cap \overline{N}) \cap N''$, which is σ -weakly closed by the σ -weak topology in N'', that is, $\sigma(N'', N')$ -topology. Therefore N is a W^* -algebra, which proves 1° . Next, if $\{a_{\alpha}\}$ is a bounded increasing directed set of self-adjoint elements of N, there exists an element a_0 in M such that $a_0 = \sup_{\alpha} a_{\alpha}$. Since π is order preserving, a simple computation shows $\pi(a_0) = \sup_{\alpha} a_{\alpha}$ in N. Hence, we have $\pi(a_0) \geq a_0$, that is, $\pi(a_0) - a_0 \geq 0$. Then, $\pi(\pi(a_0) - a_0) = 0$ which implies $\pi(a_0) - a_0 = 0$ since π is faithful on positive elements. Therefore N is a C^* -algebra in which the supremum of each bounded increasing directed set in N coincides with that in a M^* -algebra M. Hence N is a M^* -subalgebra of M owing to the result due to Kadison $\lceil 6 \rceil$. This proves 2° . Remark. It is to be noticed that the first half part of Theorem 4 does not necessarily hold without any additional assumption. For example, take a commutative AW^* -algebra N whose spectrum space is not a hyperstonean space. N is a C^* -algebra on a Hilbert space H. Let M be the σ -weak closure of N on H. M is a commutative W^* -algebra. Denote the self-adjoint parts of M and N by M_s and N_s , respectively. By [9, 10] there exists a projection of norm one from M_s onto N_s . Then we can extend this projection linearly to a projection from M to N without increasing its norm. Thus, we have a projection of norm one from M onto N and yet N is not a W^* -algebra (cf. $\lceil 3 \rceil$). In the case of AW^* -algebra, we have Theorem 5. Let M be an AW^* -algebra, N its C^* -subalgebra and π a projection of norm one from M to N, then 1° . N is an AW*-algebra, 2° . N is an AW*-subalgebra if π is faithful on positive elements in M. Proof. Let S be an arbitrary set in N and denote by R_0 and R the right annihilator in M and N, respectively. We have $R_0 = eM$ for some projection e. Now, by Theorem 1, Se = 0 implies $\pi(Se) = S\pi(e) = 0$. Hence there exists an element $a \in M$ such that $\pi(e) = ea$. We get, therefore, $$\pi(e)^2 = \pi(e)\pi(e) = \pi(e\pi(e)) = \pi(\pi(e)) = \pi(e),$$ so that $\pi(e)$ is a projection in N for $\pi(e)$ is positive. Besides, we have $\pi(e)N \subset R$. On the other hand, $\pi(e)N \supset \pi(e)R = \pi(eR) = \pi(R) = R$. We get $R = \pi(e)N$. That is, N is an AW^* -algebra (cf. [8]). To prove the second half of the theorem, we consider (e_{α}) , a family of orthogonal projections in N. Since N is an AW^* -algebra by 1° , there exists a projection e in N such that $e = \sup_{\alpha} e_{\alpha}$ in N. On the other hand we have a projection e_0 in M such that $e_0 = \sup_{\alpha} e_{\alpha}$ in M. And the same computation as in the proof of 2° in Theorem 4 shows that $\pi(e_0) = e = e_0$ if π is faithful on positive elements in M. Thus N is an AW^* -subalgebra of M (cf. [7]). ## References - [1] J. Dieudonné: La dualité dans les espaces vectoriels topologiques, Ann. École Norm. Sup., 59, 107-139 (1942). - [2] J. Dixmier: Sur un théorème de Banach, Duke Math. J., 15, 1057-1071 (1948). - [3] —: Sur certains espaces considerés par M. H. Stone, Summa Brasil Math., 11, 151-182 (1951). - [4] —: Formes linéaires sur un anneaux d'opérateurs, Bull. Soc. Math. Fr., 81, 9-39 (1953). - [5] R. V. Kadison: Isometries of operator algebras, Ann. Math., **54**, 325-338 (1951). - [6] —: Operator algebras with a faithful weakly-closed representation, Ann. Math., 64, 175-181 (1956). - [7] I. Kaplansky: Algebras of type I, Ann. Math., **56**, 460-472 (1952). - [8] —: Modules over AW^* -algebras, Amer. J. Math., 75, 939-943 (1953). - [9] L. Nachbin: A theorem of the Hahn-Banach type for linear transformations, Trans. Amer. Math. Soc., 68, 28-46 (1950). - [10] D. B. Goodner: Projections in normed linear spaces, Trans. Amer. Math. Soc., 69, 89-108 (1950). - [11] C. E. Rickart: The uniqueness of norm problem in Banach algebras, Ann. Math., **51**, 615-628 (1950). - [12] S. Sakai: A characterization of W*-algebras, Pacific J. Math., 6, 763-773 (1956). - [13] —: On the σ -weak topology of W^* -algebras, Proc. Japan Acad., **32**, 329–332 (1956). - [14] S. Sherman: The second adjoint of a C*-algebra. Proc. Inter. Congress Math., 1, 470 (1950). - [15] Z. Takeda: Conjugate spaces of operator algebras, Proc. Japan Acad., 30, 90-95 (1954).