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9. On Eigenfunction Expansions of Self-adjoint
Ordinary Differential Operators. 11

By Takashi KASUGA
(Comm. by K. KUNUGI, M.J.A., Jan. 13, 1958)

83. We introduce the characteristic matrixz of H by
M=) OL O —FB]
Miy=My=1/2)[f.(D+SOILLD) (D] (10)
M22 = I:fa(l) _fb(l)] -l
where f,(1), f,(I) are the characteristic functions of H. By (1), M,,
(4, k=1, 2) are regular on the upper and the lower half complex planes

(312:0) and

M;(H=M,(1) @4, k=1,2). (11)
For every real number A, the limits
A+87
pu()=lim limm-! f M, (a+ic) da 12)
S350 %

exist.V

As a function of 4, the matrix function p(2)=(p,;(2)) is continuous
on the right and monotone non-decreasing in the sense that, for u <2,
the symmetric matrix p(2)—p(x) is positive semi-definite.”” Hence by
the well-known procedure we can construct the matrix set function
p(B)=(p,;(B)) of bounded Borel sets B on the real line corresponding
to p(2). p(B) is positive semi-definite, and completely additive on
every bounded Borel set. For every »>0, the residual terms

R()=M,,(1)— f @=0)"tdp;.(2) 13)

are regular in the [-plane except for real [ such that [ < —p or [ >0
For the transformation (2) of the system of fundamental solutions,
p;(2) are transformed as follows

p)= [ B @ ()Y (14)

By (11), (12) and the regularity of M, (I) for 31=-0, we have for
A>2

() —pp()=— lim lim (2mi)"* f M,y dl (15)
;)/—)7\;:(-]0 e 40 O/ s 0, &)

where C(u/, p, @, €) means the contour consisting of two oriented polyg-
onal lines whose vertices, in order, are ,u +'La, ,u, —l-'wz, ,u+m, p,—l—w

1) Cf. Kodaira [3], Theorem 1.8.
2) Cf. Kodaira [3], Theorem 1.3.
8) Cf. Kodaira [3], p. 932.
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and u—1e, u—ia, p’ —ia, u’' —1i¢, respectively, the real number u/, u, a, ¢
being subject to the inequalities p' > u, a >¢=0.

8§4. Theorem 2. Let G be the set of points 2 on R such that
the characteristic function f,(I) is meromorphic in a neighbourhood of
2. If we put for 2¢ R and bounded Be®B (B is the family of Borel sets
on R)

P(l) = Pu(z) + Pzz(l) P(B) = Pn(B) + Pzz(B) (g 0)
and for 1¢G

9 D=L WDLHEQ+1]7 h(D)=[HA)+1]7'4P
then

{pnw) =[G pusBY=pulB)= [ 0. h(2) dp@)
B B (16)

poB)= [N dp(2) (GD+RD=1 for 2¢G)

for a bounded Borel set B contained in G.

Proof. i) Interval of type L
We assume at first that f,(I) is regular on a domain D containing a
bounded open interval I on R.

We take four real o, p, y, o’ (6<u<u <o) belonging to I. Now
we take in (18) a v such that v>|a|, |o'|.

By (10), for the domain D—R, we have

{ M (D) =50 M) +5 (1) @an
M (D)= M (1) =fb(l)M22(l) +1/2.

Here the last terms f,(l) and 1/2 are regular on D by the assumption
on fy(0).

By (13), we have for the domain D—R

FOMAD=F0) [ 0= dpos)+FORD)

= [ 1001 deu® + [ THO—FDIG— dpul@)
c . c , (18)
+£20) [0 dpu )+ 5D [ (=) dpuD+FO R

= [ RO dpu@)+ Res).

Here R,(l) is regular on [D—R]U(s, ") by the assumptions on f,()
and y. For example

[ LEO—£@16—=1) " dpuld

is regular on D, since [fZ(1)—sf2(A)]J(2—1)"* is regular on DX D as a
function of (I, A).
We take a contour C(u, u, @, €) as used in (15) for which «(>0)
4) If fi(A)=o0, we put gy(A)=1, hy(2)=0.
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is sufficiently small so that the closed contour C(u/, u, @, 0) and its
interior are contained in the domain [D—R]J(s, o’). We write C(e)
for such contour C(y/, u, @, ) when we regard u/, u, « as fixed and only
€ (a>e>0) as variable.

From the first formula of (17) and (18), by Cauchy’s integral
theorem and Fubini’s theorem, we have

lim f () di= i f )( f "F®) Q=D dpu) di
=1im [“A@( [G=0" 1) dp.

[2[¢5)
But by Cauchy’s integral formula and its modifications in the case
when the point A lies outside or on the contour, we have
—2mi if W>A>pu
lim (z—l)‘ldl={ —mi  if A=u or A=u (20)
400 0 if >4 or A<p.
On the other hand, we have for real A, ¢ such that ¢ <21=<¢’
I<e<a

[ a-v- 1dl|_l—2zf S[(1—s—ie) "] ds

(4¢3

(19)

=2f e[(A—s)y+&*] tds=2(Tan*! (W' —A)e ! —Tan™ ! (u—2)e™!) < 2.

'8
By (20) and (21), we can take the limit with respect to ¢ in the

last term of (19) inside the integral sign with respect to py(2).
Therefore

lim f My(lydi=—2mi [ £22) dpa(d)

+ 7 f7 (/Jf ) Lpea(pt’) — paa(’ 0)] — 7% (1) [p22( ) — p2z( p—0)],

w
since f means f .

[CAVa]
Hence by (15), considering that p.,(2) is right continuous, we have for
A, aeI(X'>2)

(21)

pul¥)—pud= [ 134) dpuld). (22)

In a quite similar way, starting from the second formula of (17), by
making use of (13), (15), we get for x,2¢ I (X' >2)

P21(ZI) —par(A)= P12(/1,) —pu(d)= f Nf 5(4) dpas(2). (23)
From (22), (28), by the well-known procedure we can conclude that
puB)= [ £ dpald) pu(B)=pu(B)= [FDdpuld)  (20)

for a Borel set B contained in I. From this, considering the definition
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of p(2), p(B), 9,(2), h,(2), we get (16) for a Borel set B contained in I
ii) Interval of type J.

Now let f,(l) have a pole at real [, If we take the new system of

fundamental solutions §,(x, [)=s,(%, 1), 8,(, [)= —s,(«, 1), then by (6), (14),

we have

{f (D=—F(1) Pu()=pu(d) P2(A)=p1(2) (25)
Pra(A)= Paa(d)=— plZ(Z) = P21(2)'

Hence we can find a bounded open interval J on R containing [, such
that fb(l) is regular on a domain D’ containing J. Then by the same
argument as in i), we get (24) where p,(2), f,(I) are replaced by
pir(A), Fi(), for a Borel set B contained in J. From this, making use
of (25) and considering the definitions of p(2), p(B), g5(3), %,(2), we get
(16) for a Borel set B contained in J.

iii) Since any bounded Borel set B contained in G can be de-
composed into mutually exclusive Borel sets B, (t=1,2,--:) at most
countable in number, each of which is contained in a bounded open
interval belonging to one of the above two types I and J, we have
(16) for any bounded Borel set B contained in G. q.e.d.

§5. We consider Borel-measurable vector functions ¢(2)=(p,(2),
®2(2)) on R and put

eIl =( f m% 2,2 p:l2) dpjk(l))

Since the matrix p(1)—p(w) (A>up) is always positive semi-definite, we
have +o0o0=>||@||*=0 and H*={p ||| ||* <+ oo} constitutes a Hilbert
space by this norm ||e||* if we identify two @', " ¢ H* such that
lo'—¢"||*=0. We put for u(x)eH®

uli=( " paa) -

Then $ constitutes a Hilbert space by this norm ||u||. Now, for every
ue®, there is a unique p(2)=(p,(2), »(2)) such that

lo— s puw) [ >0 @>a+0, ub-0) (@)

Yy
where s(z, [)=(s,(x, 1), sy(x,1)).” If we make the above ¢ correspond
to #, we have a unitary transformation V from $ onto $* and the
inverse transformation V-! is given by

e D PXOL ey (28)

where the integral converges in the mean in the L-sense.” Also ue

" (26)

5) Cf. §1.
6) Cf. Kodaira [3], Theorem 1.4, p. 928.
Ty Cf. Kodaira [3], Theorem 1.4, p. 928.
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belongs to the domain of H if and only if A-¢(1)eH* where o= Vu,
and then
VHu=2-9(2). (29)

If we denote the spectral measure on R corresponding to H by
{E;| BeB} where B is the family of Borel sets on R, then for any
ueH

VEu=C5(2)- () (30)
where @=Vu and Cz(2) is the characteristic function® of the Borel
set B.?

§6. In this section, we shall state and prove some results which
follow from the formulas of §5 by use of Theorem 1 and Theorem 2.

Let G and p(2), 9,(4), k(1) be defined as in Theorem 2. In the
following, we put g¢,(1)=h,(1)=0 for 1c R—G.

By (80), the unitary transformation Vi, the restriction of ¥V on
E,(9), has as its range the closed linear submanifold £& of $* con-
sisting of pecH* vanishing outside G. By Theorem 2 and (26), (28),
we have

e li*=( [0 20+ 0@ 9@ dp@)” (31)
for pe &, and Vi' is given by
Va's (o 2> [ DD s D+0,D 5, 2]

X [ho(2) 92(2) + 95(2) 21(2)] dp(2)
where the integral converges in the mean in the L*-sense.
We denote by $%* the set of functions on R vanishing outside G
and square integrable with respect to the measure p(B) on G and put

1= ( [ 1@ dew)” (33)

for Y()eHE*. Then HE* constitutes a Hilbert space by this norm
o [
Now by (81), (83) and the fact that g¢j(2)+A3(2)=1 for i¢G, the
transformation U from ©$%* defined by
U:(2) > (9,() ¥(2), ho(2)¥(2)) (34)
is a unitary transformation from $3* onto H& and the inverse trans-
formation U~ is given by
U2 (91(2), 92(2) = hy(2) po(2) + 95(2) p1(2). (35)
Hence if we put W=U"'V,, then W is a unitary transformation from
E,(9) onto HE*. By (27), (30), (35), for ued, WE u is given by

WEu— [ @ s, D90, Du@) dy |0 (r>a+0) (36)

(32)

8) This should not be confused with the characteristic functions f,(2), f5(2) of the
operator H.
9) Cf. Kodaira [3], Theorem 1.4, p. 928.
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where the integral has its proper sense with respect to its upper
limit b, since the function Fk,(x)="h,(2)sy(x, )+ g,(2)s,(x, 1) belongs to
G} for each 21¢ G by Theorem 1 and the definitions of g,(2), £,(2). k.(x)
is also a non-trivial solution of L[u]=2-u for each 2¢G.

By (82), (84), for Vv e HE*, W-! is given by

Wt @D [ Th) s D0, si(o, DIVD A (37)

where the integral converges in the mean in the L*-sense.

By (29) and (85), E,u where uc®, belongs to the domain of H if

and only if 2-Y(2) e H&* where v= WE,u, and then

WHE ;u=2-v¥(). (38)
Also by (80) and (85), if v= WE,u where uc®, we have for a Borel
set B contained in G

WEyu=Cp(2)-¥(2) (39)
where Cy(2) is the characteristic function of B on R.

Remark 1. We have stated and proved Theorem 2 and the results
in §6 for the end point b, but of course similar results can be ob-
tained for the end point a.

Remark 2. From (38) or (39) we see that H has a simple spectrum
on G and from (89), (36), (37) we see that {k,(x)|kx(x)=nh,(R)s.(, 2)
+9,(2) sy(x, 2), A€ G} is the set of continuous eigenfunctions for i¢G
in the sense of Mautner.!® Theorem 1 states that the continuous
eigenfunction k,(x) for each 1¢ G belongs to &;,. Also k,(x) is a non-
trivial solution of L[u]=2-u for 21¢G.
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