38 [Vol. 34,

9. On Eigenfunction Expansions of Self-adjoint Ordinary Differential Operators. II

By Takashi Kasuga

(Comm. by K. Kunugi, M.J.A., Jan. 13, 1958)

 $\S 3$. We introduce the *characteristic matrix* of H by

$$M_{11} = f_a(l) \cdot f_b(l) [f_a(l) - f_b(l)]^{-1}$$

$$M_{12} = M_{21} = (1/2) [f_a(l) + f_b(l)] [f_a(l) - f_b(l)]^{-1}$$

$$M_{22} = [f_a(l) - f_b(l)]^{-1}$$
(10)

where $f_a(l)$, $f_b(l)$ are the characteristic functions of H. By (1), M_{jk} (j, k=1, 2) are regular on the upper and the lower half complex planes $(\Im l \neq 0)$ and

$$M_{ik}(\bar{l}) = \overline{M_{ik}(l)} \quad (j, k=1, 2).$$
 (11)

For every real number λ , the limits

$$\rho_{jk}(\lambda) = \lim_{\substack{\delta \to +0 \\ \delta' \to +0}} \lim_{\epsilon \to +0} \pi^{-1} \int_{\delta}^{\lambda + \delta'} \Im M_{jk}(\lambda + i\epsilon) \, d\lambda \tag{12}$$

exist.1)

As a function of λ , the matrix function $p(\lambda) = (\rho_{jk}(\lambda))$ is continuous on the right and monotone non-decreasing in the sense that, for $\mu < \lambda$, the symmetric matrix $p(\lambda) - p(\mu)$ is positive semi-definite.²⁾ Hence by the well-known procedure we can construct the matrix set function $p(B) = (\rho_{jk}(B))$ of bounded Borel sets B on the real line corresponding to $p(\lambda)$. p(B) is positive semi-definite, and completely additive on every bounded Borel set. For every $\nu > 0$, the residual terms

$$R_{jk}^{(v)}(l) = M_{jk}(l) - \int_{0}^{v} (\lambda - l)^{-1} d\rho_{jk}(\lambda)$$
 (13)

are regular in the l-plane except for real l such that $l \leq -\nu$ or $l \geq \nu$. For the transformation (2) of the system of fundamental solutions, $\rho_{jk}(\lambda)$ are transformed as follows

$$\rho_{jk}(\lambda) = \int_{0}^{\lambda} \sum_{m,n} \beta_{mj}(\lambda) \, \beta_{nk}(\lambda) \, d\widetilde{\rho}_{mn}(\lambda).^{3}$$
 (14)

By (11), (12) and the regularity of $M_{jk}(l)$ for $\Im l \neq 0$, we have for $\lambda' > \lambda$

$$\rho_{jk}(\lambda') - \rho_{jk}(\lambda) = -\lim_{\substack{\mu \to \lambda + 0 \\ \mu' \to \lambda' + 0}} \lim_{\varepsilon \to + 0} (2\pi i)^{-1} \int_{C(\mu', \mu, \alpha, \varepsilon)} M_{jk}(l) \, dl \tag{15}$$

where $C(\mu', \mu, \alpha, \varepsilon)$ means the contour consisting of two oriented polygonal lines whose vertices, in order, are $\mu' + i\varepsilon$, $\mu' + i\alpha$, $\mu + i\alpha$, $\mu + i\varepsilon$

¹⁾ Cf. Kodaira [3], Theorem 1.3.

²⁾ Cf. Kodaira [3], Theorem 1.3.

³⁾ Cf. Kodaira [3], p. 932.

and $\mu - i\varepsilon$, $\mu - i\alpha$, $\mu' - i\alpha$, $\mu' - i\varepsilon$, respectively, the real number μ' , μ , α , ε being subject to the inequalities $\mu' > \mu$, $\alpha > \varepsilon \ge 0$.

§4. Theorem 2. Let G be the set of points λ on R such that the characteristic function $f_{\delta}(l)$ is meromorphic in a neighbourhood of λ . If we put for $\lambda \in R$ and bounded $B \in \mathfrak{B}$ (\mathfrak{B} is the family of Borel sets on R)

$$\rho(\lambda) = \rho_{11}(\lambda) + \rho_{22}(\lambda)$$
 $\rho(B) = \rho_{11}(B) + \rho_{22}(B)$ (≥ 0)

and for $\lambda \in G$

$$g_b(\lambda) = f_b(\lambda) [f_b^2(\lambda) + 1]^{-1/2} \quad h_b(\lambda) = [f_b^2(\lambda) + 1]^{-1/2},$$

then

$$\begin{cases} \rho_{11}(B) = \int_{B} g_b^2(\lambda) \, d\rho(\lambda) & \rho_{12}(B) = \rho_{21}(B) = \int_{B} g_b(\lambda) \, h_b(\lambda) \, d\rho(\lambda) \\ \rho_{22}(B) = \int_{B} h_b^2(\lambda) \, d\rho(\lambda) & (g_b^2(\lambda) + h_b^2(\lambda) = 1 \quad \text{for} \quad \lambda \in G) \end{cases}$$

$$(16)$$

for a bounded Borel set B contained in G.

Proof. i) Interval of type I.

We assume at first that $f_b(l)$ is regular on a domain D containing a bounded open interval I on R.

We take four real σ , μ , μ' , σ' ($\sigma < \mu < \mu' < \sigma'$) belonging to I. Now we take in (13) a ν such that $\nu > |\sigma|$, $|\sigma'|$.

By (10), for the domain D-R, we have

$$\begin{cases}
M_{11}(l) = f_b^2(l) M_{22}(l) + f_b(l) \\
M_{21}(l) = M_{12}(l) = f_b(l) M_{22}(l) + 1/2.
\end{cases}$$
(17)

Here the last terms $f_b(l)$ and 1/2 are regular on D by the assumption on $f_b(l)$.

By (13), we have for the domain D-R

$$\begin{split} f_{b}^{2}(l)M_{22}(l) = & f_{b}^{2}(l) \int_{-\nu}^{\nu} (\lambda - l)^{-1} d\rho_{22}(\lambda) + f_{b}^{2}(l)R_{22}^{(\nu)}(l) \\ = & \int_{\sigma}^{\sigma'} f_{b}^{2}(\lambda)(\lambda - l)^{-1} d\rho_{22}(\lambda) + \int_{\sigma}^{\sigma'} \left[f_{b}^{2}(l) - f_{b}^{2}(\lambda) \right] (\lambda - l)^{-1} d\rho_{22}(\lambda) \\ + & f_{b}^{2}(l) \int_{-\nu}^{\sigma} (\lambda - l)^{-1} d\rho_{22}(\lambda) + f_{b}^{2}(l) \int_{\sigma'}^{\nu} (\lambda - l)^{-1} d\rho_{22}(\lambda) + f_{b}^{2}(l)R_{22}^{(\nu)}(l) \\ = & \int_{\sigma'}^{\sigma'} f_{b}^{2}(\lambda)(\lambda - l)^{-1} d\rho_{22}(\lambda) + R_{22}(l). \end{split}$$
(18)

Here $R_{22}(l)$ is regular on $[D-R] \bigcup (\sigma,\sigma')$ by the assumptions on $f_b(l)$ and ν . For example

$$\int_{-\infty}^{\sigma'} [f_b^2(l) - f_b^2(\lambda)] (\lambda - l)^{-1} d
ho_{22}(\lambda)$$

is regular on D, since $[f_b^2(l)-f_b^2(\lambda)](\lambda-l)^{-1}$ is regular on $D\times D$ as a function of (l,λ) .

We take a contour $C(\mu', \mu, \alpha, \varepsilon)$ as used in (15) for which $\alpha(>0)$

⁴⁾ If $f_b(\lambda) = \infty$, we put $g_b(\lambda) = 1$, $h_b(\lambda) = 0$.

is sufficiently small so that the closed contour $C(\mu', \mu, \alpha, 0)$ and its interior are contained in the domain $[D-R] \cup (\sigma, \sigma')$. We write $C(\varepsilon)$ for such contour $C(\mu', \mu, \alpha, \varepsilon)$ when we regard μ', μ, α as fixed and only ε $(\alpha > \varepsilon > 0)$ as variable.

From the first formula of (17) and (18), by Cauchy's integral theorem and Fubini's theorem, we have

$$\lim_{\varepsilon \to +0} \int_{C(\varepsilon)} M_{11}(l) \, dl = \lim_{\varepsilon \to +0} \int_{C(\varepsilon)} \left(\int_{\sigma}^{\sigma'} f_b^2(\lambda) \, (\lambda - l)^{-1} \, d\rho_{22}(\lambda) \right) dl \\
= \lim_{\varepsilon \to +0} \int_{\sigma}^{\sigma'} f_b^2(\lambda) \left(\int_{C(\varepsilon)} (\lambda - l)^{-1} \, dl \right) d\rho_{22}(\lambda). \tag{19}$$

But by Cauchy's integral formula and its modifications in the case when the point λ lies outside or on the contour, we have

$$\lim_{\varepsilon \to +0} \int_{\mathcal{O}(\varepsilon)} (\lambda - l)^{-1} dl = \begin{cases} -2\pi i & \text{if } \mu' > \lambda > \mu \\ -\pi i & \text{if } \lambda = \mu' \text{ or } \lambda = \mu \\ 0 & \text{if } \lambda > \mu' \text{ or } \lambda < \mu. \end{cases}$$
 (20)

On the other hand, we have for real λ , ε such that $\sigma < \lambda \leqq \sigma'$ $0 < \varepsilon < \alpha$

$$egin{aligned} & \left|\int\limits_{\mathcal{C}(arepsilon)} (\lambda-l)^{-1} dl
ight| = & \left|-2i \int\limits_{\mu}^{\mu'} \Im\left[(\lambda-s-iarepsilon)^{-1}
ight] ds
ight| \ = & 2 \int\limits_{\mu}^{\mu'} arepsilon \left[(\lambda-s)^2 + arepsilon^2
ight]^{-1} ds = & 2 \left(\operatorname{Tan}^{-1}\left(\mu'-\lambda
ight) arepsilon^{-1} - \operatorname{Tan}^{-1}\left(\mu-\lambda
ight) arepsilon^{-1}
ight) \leq & 2\pi. \end{aligned}$$

By (20) and (21), we can take the limit with respect to ε in the last term of (19) inside the integral sign with respect to $\rho_{22}(\lambda)$. Therefore

$$\lim_{\varepsilon \to +0} \int_{C(\varepsilon)} M_{11}(l) \, dl = -2\pi i \int_{\mu}^{\mu'} f_b^2(\lambda) \, d\rho_{22}(\lambda) \\ + \pi i \, f_b^2(\mu') [\rho_{22}(\mu') - \rho_{22}(\mu' - 0)] - \pi i \, f_b^2(\mu) [\rho_{22}(\mu) - \rho_{22}(\mu - 0)],$$
 since
$$\int_{\mu}^{\mu'} \text{means } \int_{(\mu, \mu')} .$$

Hence by (15), considering that $\rho_{22}(\lambda)$ is right continuous, we have for λ' , $\lambda \in I(\lambda' > \lambda)$

$$\rho_{11}(\lambda') - \rho_{11}(\lambda) = \int_{\lambda}^{\lambda'} f_b^2(\lambda) \, d\rho_{22}(\lambda). \tag{22}$$

In a quite similar way, starting from the second formula of (17), by making use of (13), (15), we get for λ' , $\lambda \in I(\lambda' > \lambda)$

$$\rho_{21}(\lambda') - \rho_{21}(\lambda) = \rho_{12}(\lambda') - \rho_{12}(\lambda) = \int_{\lambda}^{\lambda'} f_b(\lambda) \, d\rho_{22}(\lambda). \tag{23}$$

From (22), (23), by the well-known procedure we can conclude that

$$\rho_{11}(B) = \int_{B} f_b^2(\lambda) \, d\rho_{22}(\lambda) \quad \rho_{21}(B) = \rho_{12}(B) = \int_{B} f_b(\lambda) \, d\rho_{22}(\lambda) \tag{24}$$

for a Borel set B contained in I. From this, considering the definition

of $\rho(\lambda)$, $\rho(B)$, $g_b(\lambda)$, $h_b(\lambda)$, we get (16) for a Borel set B contained in I.

ii) Interval of type J.

Now let $f_b(l)$ have a pole at real l_0 . If we take the new system of fundamental solutions $\tilde{s}_1(x, l) = s_2(x, l)$, $\tilde{s}_2(x, l) = -s_1(x, l)$, then by (6), (14), we have

$$\begin{cases}
\widetilde{f}_b(l) = -f_b^{-1}(l) & \widetilde{\rho}_{11}(\lambda) = \rho_{22}(\lambda) & \widetilde{\rho}_{22}(\lambda) = \rho_{11}(\lambda) \\
\widetilde{\rho}_{12}(\lambda) = \widetilde{\rho}_{21}(\lambda) = -\rho_{12}(\lambda) = -\rho_{21}(\lambda).
\end{cases}$$
(25)

Hence we can find a bounded open interval J on R containing l_0 such that $\widetilde{f}_b(l)$ is regular on a domain D' containing J. Then by the same argument as in i), we get (24) where $\rho_{jk}(\lambda)$, $f_b(l)$ are replaced by $\widetilde{\rho}_{jk}(\lambda)$, $\widetilde{f}_b(l)$, for a Borel set B contained in J. From this, making use of (25) and considering the definitions of $\rho(\lambda)$, $\rho(B)$, $g_b(\lambda)$, $h_b(\lambda)$, we get (16) for a Borel set B contained in J.

- iii) Since any bounded Borel set B contained in G can be decomposed into mutually exclusive Borel sets B_i ($i=1,2,\cdots$) at most countable in number, each of which is contained in a bounded open interval belonging to one of the above two types I and J, we have (16) for any bounded Borel set B contained in G. q. e. d.
- §5. We consider Borel-measurable vector functions $\varphi(\lambda) = (\varphi_1(\lambda), \varphi_2(\lambda))$ on R and put

$$\|\varphi\|^* = \left(\int_{-\infty}^{+\infty} \sum_{j,k} \varphi_j(\lambda) \, \overline{\varphi_k(\lambda)} \, d\rho_{jk}(\lambda)\right)^{1/2}. \tag{26}$$

Since the matrix $p(\lambda)-p(\mu)$ $(\lambda>\mu)$ is always positive semi-definite, we have $+\infty \ge ||\varphi||^* \ge 0$ and $\mathfrak{D}^*=\{\varphi \mid ||\varphi||^*<+\infty\}$ constitutes a Hilbert space by this norm $||\varphi||^*$ if we identify two $\varphi', \varphi'' \in \mathfrak{D}^*$ such that $||\varphi'-\varphi''||^*=0$. We put for $u(x) \in \mathfrak{D}^{5}$

$$||u|| = \left(\int_a^b |u(x)|^2 dx\right)^{1/2}$$
.

Then \mathfrak{H} constitutes a Hilbert space by this norm ||u||. Now, for every $u \in \mathfrak{H}$, there is a unique $\varphi(\lambda) = (\varphi_1(\lambda), \varphi_2(\lambda))$ such that

$$\left\| \varphi - \int_{y_1}^{y_2} s(y, \lambda) \, u(y) \, dy \, \right\|^* \to 0 \quad (y_1 \to a + 0, \ y_2 \to b - 0) \tag{27}$$

where $s(x, l) = (s_1(x, l), s_2(x, l))$. If we make the above φ correspond to u, we have a unitary transformation V from \mathfrak{H} onto \mathfrak{H}^* and the inverse transformation V^{-1} is given by

$$(\varphi_1, \varphi_2) \to \int_{-\infty}^{+\infty} \sum_{j,k} s_j(x, \lambda) \, \varphi_k(\lambda) \, d\rho_{jk}(\lambda) \tag{28}$$

where the integral converges in the mean in the L^2 -sense. Also $u \in \mathfrak{H}$

- 5) Cf. §1.
- 6) Cf. Kodaira [3], Theorem 1.4, p. 928.
- 7) Cf. Kodaira [3], Theorem 1.4, p. 928.

belongs to the domain of H if and only if $\lambda \cdot \varphi(\lambda) \in \mathfrak{H}^*$ where $\varphi = Vu$, and then

$$VHu = \lambda \cdot \varphi(\lambda). \tag{29}$$

If we denote the spectral measure on R corresponding to H by $\{E_B \mid B \in \mathfrak{B}\}$ where \mathfrak{B} is the family of Borel sets on R, then for any $u \in \mathfrak{H}$

$$VE_{B}u = C_{B}(\lambda) \cdot \varphi(\lambda) \tag{30}$$

where $\varphi = Vu$ and $C_B(\lambda)$ is the characteristic function⁸⁾ of the Borel set $B_*^{9)}$

§6. In this section, we shall state and prove some results which follow from the formulas of §5 by use of Theorem 1 and Theorem 2.

Let G and $\rho(\lambda)$, $g_b(\lambda)$, $h_b(\lambda)$ be defined as in Theorem 2. In the following, we put $g_b(\lambda) = h_b(\lambda) = 0$ for $\lambda \in R - G$.

By (30), the unitary transformation V_G , the restriction of V on $E_G(\mathfrak{H})$, has as its range the closed linear submanifold \mathfrak{H}_G^* of \mathfrak{H}^* consisting of $\varphi \in \mathfrak{H}^*$ vanishing outside G. By Theorem 2 and (26), (28), we have

$$\|\varphi\|^* = \left(\int_{G} |h_b(\lambda)\varphi_2(\lambda) + g_b(\lambda)\varphi_1(\lambda)|^2 d\rho(\lambda)\right)^{1/2}$$
(31)

for $\varphi \in \mathfrak{H}_G^*$, and V_G^{-1} is given by

$$V_{G}^{-1}: (\varphi_{1}(\lambda), \varphi_{2}(\lambda)) \rightarrow \int_{-\infty}^{+\infty} [h_{b}(\lambda) s_{2}(x, \lambda) + g_{b}(\lambda) s_{1}(x, \lambda)]$$

$$(32)$$

$$\times [h_b(\lambda) \varphi_2(\lambda) + g_b(\lambda) \varphi_1(\lambda)] d\rho(\lambda)$$

where the integral converges in the mean in the L^2 -sense.

We denote by \mathfrak{H}_G^{**} the set of functions on R vanishing outside G and square integrable with respect to the measure $\rho(B)$ on G and put

$$||\psi||^{**} = \left(\int_{C} |\psi(\lambda)|^2 d\rho(\lambda)\right)^{1/2} \tag{33}$$

for $\psi(\lambda) \in \mathfrak{H}_G^{**}$. Then \mathfrak{H}_G^{**} constitutes a Hilbert space by this norm $||\psi||^{**}$.

Now by (31), (33) and the fact that $g_b^2(\lambda) + h_b^2(\lambda) = 1$ for $\lambda \in G$, the transformation U from \mathfrak{F}_G^{**} defined by

$$U: \psi(\lambda) \to (g_b(\lambda) \, \psi(\lambda), \ h_b(\lambda) \, \psi(\lambda)) \tag{34}$$

is a unitary transformation from \mathfrak{H}_G^{**} onto \mathfrak{H}_G^* and the inverse transformation U^{-1} is given by

$$U^{-1}: (\varphi_1(\lambda), \varphi_2(\lambda)) \to h_b(\lambda) \varphi_2(\lambda) + g_b(\lambda) \varphi_1(\lambda). \tag{35}$$

Hence if we put $W = U^{-1}V_G$, then W is a unitary transformation from $E_G(\mathfrak{H})$ onto \mathfrak{H}_G^{**} . By (27), (30), (35), for $u \in \mathfrak{H}$, WE_Gu is given by

$$\left\| WE_{G}u - \int_{y_{1}}^{b} \left[h_{b}(\lambda) s_{2}(y,\lambda) + g_{b}(\lambda) s_{1}(y,\lambda) \right] u(y) \, dy \right\|^{**} \to 0 \quad (y_{1} \to a + 0) \quad (36)$$

- 8) This should not be confused with the characteristic functions $f_a(\lambda)$, $f_b(\lambda)$ of the operator H.
 - 9) Cf. Kodaira [3], Theorem 1.4, p. 928.

where the integral has its proper sense with respect to its upper limit b, since the function $k_{\lambda}(x) = h_b(\lambda) s_2(x, \lambda) + g_b(\lambda) s_1(x, \lambda)$ belongs to \mathfrak{G}_b' for each $\lambda \in G$ by Theorem 1 and the definitions of $g_b(\lambda)$, $h_b(\lambda)$. $k_{\lambda}(x)$ is also a non-trivial solution of $L[u] = \lambda \cdot u$ for each $\lambda \in G$.

By (32), (34), for $\psi \in \mathfrak{H}_{G}^{**}$, W^{-1} is given by

$$W^{-1}: \psi(\lambda) \to \int_{-\infty}^{+\infty} [h_b(\lambda) \, s_2(x,\lambda) + g_b(\lambda) \, s_1(x,\lambda)] \psi(\lambda) \, d\rho(\lambda) \tag{37}$$

where the integral converges in the mean in the L^2 -sense.

By (29) and (35), $E_G u$ where $u \in \mathfrak{H}$, belongs to the domain of H if and only if $\lambda \cdot \psi(\lambda) \in \mathfrak{H}_G^{**}$ where $\psi = W E_G u$, and then

$$WHE_{G}u = \lambda \cdot \psi(\lambda). \tag{38}$$

Also by (30) and (35), if $\psi = WE_G u$ where $u \in \mathfrak{H}$, we have for a Borel set B contained in G

$$WE_{B}u = C_{B}(\lambda) \cdot \psi(\lambda) \tag{39}$$

where $C_B(\lambda)$ is the characteristic function of B on R.

Remark 1. We have stated and proved Theorem 2 and the results in $\S 6$ for the end point b, but of course similar results can be obtained for the end point a.

Remark 2. From (38) or (39) we see that H has a simple spectrum on $G^{10)}$ and from (39), (36), (37) we see that $\{k_{\lambda}(x) \mid k_{\lambda}(x) = h_{b}(\lambda) s_{2}(x, \lambda) + g_{b}(\lambda) s_{1}(x, \lambda), \lambda \in G\}$ is the set of continuous eigenfunctions for $\lambda \in G$ in the sense of Mautner.¹¹⁾ Theorem 1 states that the continuous eigenfunction $k_{\lambda}(x)$ for each $\lambda \in G$ belongs to \mathfrak{G}'_{b} . Also $k_{\lambda}(x)$ is a nontrivial solution of $L[u] = \lambda \cdot u$ for $\lambda \in G$.

References

 $\lceil 1 \rceil - \lceil 9 \rceil$, listed at the end of part I, Proc. Japan Acad., 33, 595 (1957).

¹⁰⁾ Cf. Stone [5], Chapter VII.

¹¹⁾ Cf. Mautner [4]. Also cf. Bade and Schwartz [1].