28 [Vol. 34,

6. A Generalisation of a Theorem of W. Sierpiński

By Kiyoshi Iséki

(Comm. by K. Kunugi, M.J.A., Jan. 13, 1958)

Some well-known results on the continuum hypothesis by W. Sierpiński have been generalised by the late Professor S. Ruziewicz [1, 2]. In this Note, we shall generalise a recent result of W. Sierpiński [3]. First we shall explain some terminologies needed. By a (closed) segment of an ordered set M is meant $\{x \mid a \leq x \leq b, x \in M\}$ for a, b of a with a < b. We call a and a its endpoints of such a segment, and by a or a or a or a denote the segment with endpoints a and a. By a we denote the power of a. Then we have the following

Theorem. Let M be an ordered set with cardinal number \mathfrak{m} . A cardinal number \mathfrak{n} is not less than \mathfrak{m} if and only if the following proposition holds true: for every element a of M, we can assign a family $\underline{\mathcal{F}}(a)$ of interval such that each interval of it has a as endpoint and $\overline{\overline{\mathcal{F}}(a)} < \mathfrak{n}$, and one of any distinct elements of M is an endpoint of an interval of some $\underline{\mathcal{F}}(a)$.

Proof. To prove it, we shall use the idea of Sierpiński [3]. Suppose that $m \leq n$, and $m = \Re_{\alpha}$. The ordered set M is well-ordered of type ω_{α} (ω_{α} is the initial ordinal of \Re_{α}): $x_1, x_2, \dots, x_{\omega}, \dots, x_{\xi}, \dots$ ($\xi < \omega_{\alpha}$). For every x_{α} ($\alpha < \omega_{\alpha}$), we shall consider the family $\mathcal{F}(\alpha)$ such that $[x_{\alpha}, x_{\xi}]$ ($\xi < \alpha$). Therefore $\overline{\mathcal{F}(\alpha)} < m \leq n$, hence $\overline{\mathcal{F}(\alpha)} < n$. Let x_{α}, x_{β} be two distinct elements of M, then we have $\alpha + \beta$. If $\alpha < \beta$, then the interval $[x_{\alpha}, x_{\beta}]$ is contained in $\mathcal{F}(a)$ corresponding to β . If $\alpha > \beta$, then $[x_{\alpha}, x_{\beta}]$ is contained in $\mathcal{F}(a)$ corresponding to α .

Conversely, we shall show that the proposition implies $m \le n$. To prove it, we shall suppose m > n. Let $\mathcal{P}(a)$ be the set of endpoints of $\mathcal{F}(a)$. For two distinct elements a, b, we have $a \in \mathcal{P}(b) - b$ or $b \in \mathcal{P}(a) - a$. Let N be a subset of M of cardinal number n, and let A be the set of the union of $\mathcal{P}(a)$ for a of N. Since $\overline{\mathcal{P}(a)} < n$, the cardinal number of A is n. Therefore we can find an element x of M such that x is not contained in A. Let a be an element of N, then $a \neq x$ and x is not contained in $\mathcal{P}(a)$. Therefore we have $a \in \mathcal{P}(x)$, and $N \subset \mathcal{P}(x)$. This shows that $\overline{\mathcal{P}(x)} \ge n$, which is a contradiction. Hence m < n.

References

- [1] S. Ruziewicz: Une généralisation d'un théorème de M. Sierpiński, Publ. Math. Univ. Belgrade, 5, 23-27 (1936).
- [2] S. Ruziewicz: Généralisation des quelques théorèmes équivalents à l'hypothèse du continu, C. R. Soc. Sc. Varsovie, 30, 1-7 (1937).
- [3] W. Sierpiński: Sur une propriété de la droite équivalente à l'hypothèse du continu, Ganita, 5, 113-116 (1954).