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4. A Note on the Integration by the Method of
Ranked Spaces

By Teruo IKEGAMI
(Comm. by K. KUNUGI, M.J.A., Jan. 13, 1958)

8§ 1. Prof. K. Kunugi showed in his note “Application de la mé-
thode des espaces rangés & la théorie de I'intégration. I”? that a new
integration can be constructed by the method of ranked spaces,” and
suggested that the development of his theory could be generalized for
functions on abstract spaces— for example, locally compact topological
groups. In this note, we shall consider the locally compact group G
and we shall show that the construction of integrals can be done with-
out changing any detail of the preceding note.

Let G be a locally compact group, m be a Haar measure in G,»
that is, a Borel measure in G, such that m(U)>0 for every non empty
Borel open set U, and m(zE)=m(E) for every Borel set E, and for
every element x of G.

First we shall remark that, in a locally compact group there is
a fundamental system of neighbourhoods of unit element e, which
consists of neighbourhoods whose boundaries are of measure zero.

Let V be a compact neighbourhood of unit element e whose
boundary is of measure zero, and from now on our considerations are
restricted to the fixed V.

Let the family © be a totality of open sets in V whose boundaries
are of measure zero. Then,

(1) If 0,0, 0,e© then 0,~0,¢0, 0,~0,¢0.

(2) If 0,60, 0,6O then 0, ~(V—0,)¢e0.

The vector space over the field of real numbers generated by
characteristic functions of sets in © is denoted by @. To fe@® cor-
respond a finite number of disjoint sets 0,¢© (¢=1,2,--.,7n) and

f(@)= g a’iXoi(x)

where x,, is a characteristic function of O, and a, is a real number.
Two functions of @, f(x), g(x) are identified when they are different
only on the boundary of Oec(®. Obviously if fe®, ge@ then f+ge@,

1) K. Kunugi: Application de la méthode des espaces rangés & la théorie de
Pintégration. I, Proc. Japan Acad., 32, 215-220 (1956).

2) K. Kunugi: Sur les espaces complets et réguliérement complets. I, II, Proc.
Japan Acad., 30, 553-556, 912-916 (1954).

8) On Haar measure, see for example P. R. Halmos; Measure Theory, New
York (1950).
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afe® (aisreal), and | f|c®, the set of point of discontinuity of f is
of measure zero. For fe@ we define its integral

[f@de=31am(©)
where f(x)= é%xo (). This integral is clearly linear (with respect to

f) and flf(x)|dw=0 implies f(x)=0. If f(x)=0 then ff(x)dxg(),
finally

| [f@)da| < [1£@)do = sup | 1) |-33m(0).

By the well-known development of integral theory we proceed to en-
large the class of integrable functions and its integrals.* First we
can prove following two important lemmas:

For every sequence {f.(x)} (f,€®, n=1,2,-..) which decreases to
zero almost everywhere, the sequence of values of their integrals also
tends to zero.

If for an increasing sequence {f,(¥)} (f,€®, n=1,2,--.) the values
of their integrals have a common bound, then the sequence {f.(x)}
tends almost everywhere to a finite limit.

In this situation, we set @, the class of limit functions of increas-
ing sequence {f.(x)} (f.€®, »=1,2,-..) having a common bound of
their integrals. If fe@, and almost everywhere lim f,(x)=f(x), where

{f.} is defining sequence of f, we define the integral of f(x):
f f(x) dw=1im f fu() da.

This integral does not depend on the special choice of defining sequence
of f(x).

Next, we set @, the class of functions which can be expressed by
difference of two functions of @,. Its integral is defined as follows:

If fe®, is expressed as f(2)=rf1(2)—fu(x), f1€P,, fr€®, then:
[f@da= [ fi@)dz— [ fiw)d.

@, makes a vector space, and includes @, and @, and there their

integrals coincide. If f(x)e®,, f(x)=0 then f Sf(x)dx=0. If fe@,
then f*, f~ and | f|ec®,.

Further we can prove the Beppo Levi’s theorem.

Every increasing sequence {A,(x)} (h,€®,, n=1,2,..-) whose inte-
grals have common bound converges almost everywhere to a limit
function he@, and integration can be carried out term by term.

4) Cf. F. Riesz and B. Sz.-Nagy: Lecons d’Analyse Fonctionnelle, Académie
des Sciences de Hongrie (1952).
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As a corollary of this theorem.
Every series i‘lkn(w) (k,e @y n=1,2,--.) for which i f | k() | da
n= n=1

converges, converges itself almost everywhere to a function of @,, and
the series can be integrated term by term.

Of course the affirming theorems of integrability of a limit fune-
tion (Lebesgue’s theorem, Fatou’s lemma) are true. As an application
of them we get:

If fe® and B is a compact set then f.xz€®, In fact it is
sufficient to show that if Oe(® then x5 5¢®, in this case we can
construct a sequence of open sets O, each of which is a union of a

finite number of sets 0,60, and 0°’20®D..-2D0™2..-20~B and

m{O™” —(0O~B)}<2-". Denoting by f,(x) the characteristic function of
0™, {f.(®)} makes a decreasing sequence of functions of @ which tends
almost everywhere to x5z Further, if fe®, and B is a compact set
then f-xz€®@,. And finally, if fe®, and B is a Borel set then f-xz¢®,.
In fact, the family of set B, for which the proposition is true contains
all compact sets and makes a o-ring, therefore contains all Borel sets.

As a preparation we shall add the last one which concerns Haar
measure.

Let B be a Borel set and m(B)=a then for any value b, a=b=>0
there exists a Borel subset B'< B and m(B')=b. In fact we can as-
sume a>b>0, we select a natural number »n such that a—1/n>b>1/n,
there exist an open Borel set U:Use, m(U)<1/n, and a compact set
C:Cc B, m(B—C)<1/n. Since C is covered by a finite number of
U-x, C contains a Borel set D, b=m(D)=b—1/n. By the same way,
we can find a sequence of Borel sets D,, D,=D,,,, limm(D,)=b.

Therefore GD,, is a desired set.
n=1

§ 2. After this preparation has been established, we shall proceed
to a construction of integrals, which is quite parallel to the note of
Prof. K. Kunugi.”

First, we introduce into @ (recall @ is a vector space generated
by characteristic functions of sets Oe(®) topology and rank® so that
they make @ a uniform space and in the same time a ranked space.
When positive integer or zero v and a closed set FFCV are given we
define a neighbourhood of the identically zero function 0, v(F,v; 0) as
the totality of functions f(x) of @ each of which has the following
property: f(x) is a sum of two functions of @:

S (@)=p(x)+r(x)

and they satisfy the following conditions:

5) See 2).
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[1] »(x) vanishes for all xeF.
[2] We have fl p(x) | de<27,

[8] We have (fr(x)dw.<2"’.

The neighbourhood of a function fe®, v(F,y; f) is defined as the
totality of functions ge® such that g(x)— f(x)<v(F, »; 0).

We can find without difficulty that the neighbourhoods just defined
satisfy the following propositions.

(1*) All neighbourhoods »(F, »; 0) contain the function 0.

(2*) If two arbitrary neighbourhoods of 0, v(F',v;0) and v(F,,
vg; 0) are given there exist neighbourhoods v(F%, vs; 0) such that v(F%,
vg 0) S v(F'y, vi; 0) ~v(FYy, va; 0).

(8*) For every neighbourhood of 0, v=v(F, »; 0), we have v=v"1%

(4*) For any neighbourhood of 0, v=v(F, v; 0), there exist neigh-
bourhoods of 0, w=v(F’,»";0) such that w*<v.®

(6*) If fe@ is not identically zero, there exists a neighbourhood
of 0, v(F,v;0), which does not contain the function f.

These propositions show that @ is a uniform space.

To define the rank, we shall remark that the sequence of neigh-
bourhoods v(V,»;0) (v=0,1,2,---) is maximal monotone sequence.”
Therefore the depth of the space @ is w,. The class B, of neighbour-
hoods of rank v (v=0,1,2,---) is defined as the totality of neighbour-
hoods v(F, v; f), f €@ which satisfy the condition

m(V—F)<27,
Then, we can find that for any neighbourhood of f, v=v(F,v; f) and
for any rank u, there exists a neighbourhood u of f such that u is
contained in v and the rank of w is higher than u. Consequently, @
is a ranked space.

We can introduce the notion of fundamental sequence and maximal
collections quite similar to Prof. Kunugi.”

These notions are established, we can prove the following theorems:

THEOREM 1. Let u={u,=v(F,, v,; f.)} be a fundamental sequence.
Then the functions f,=f,(x) tend almost everywhere in V to a func-
tion f(x).

THEOREM 2. Let u={u,(f,)}, v={v,(g9.)} be fundamental sequences
which belong to the same maximal collection. Set

F@)=lmf,@), g@)=lim g,@).
Then, we have almost everywhere f(x)=g(x).
Therefore, if we identify two functions different only on a set of

6) v-! denotes the set of ‘all functions — f such that fev. w?=w.w denotes the
set of all functions f=g-+h such that gew, hew.
7 Cf. 2).
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measure 0, each maximal collection f* decides a function. We denote
this function J[f*] and we shall call it a function associated to maxi-
mal collection f*.

ProPOSITION 1. Let u={u,(f,)} be an arbitrary fundamental

sequence. Then f fa(x)da forms a Cauchy sequence of real numbers.
Consequently we can write: I[u]=lim f Ja() da.

PROPOSITION 2. If two fundamental sequences u={u,(f,)}, v=
{v.(g,)} belong to the same maximal collection f* then I[u]=I[v].
Therefore we can write this common value I=I[f*].
ProPOSITION 3. Let u={u,=v(F,, v,; f.)} be a arbitrary funda-
mental sequence, such that F,=F,,, (n=0,1,2,.-.), and we set f(x)
=lim f,(¥). Then for every m, m=0,1,2,.-- the function f(x)-xr, (%)
n-yc0
belongs to the class @,.

In fact, the sequence of functions (f,—f.)"xr, (n>m,n'=n,
n+1,--.), each of which belongs to @, tends almost everywhere to

(f— ,,)*xpm, furthermore the sequence of values satisfies f (fw—Tw)t

Xr, <27 (n'=n,n+1,---), and then by Fatou’s lemma we have
(f—f2)Xr, €P:. Similarly we get (f—f,) Xz, €P,. Therefore f-xy,
€d,.

Let us consider a following property of the fundamental sequence
u={v(F,, v,; f»)} —in the following we shall call it “ property (P)”.

(P) There exists a function of » (n=0,1,2,.--) $(n) satisfying
the following conditions:

(1) ¢(n)>0 for n=0,1,2,--.

(2) lim g(n)=0.

(8) For every Borel set E contained in V' and whose measure

does not exceed the measure of V—F',, we have f | fu@) | x x(®) de < p(m).
(4) FicF,c---CF,C---
(B) wo<<yy<< oo e <pp<<iees

Then we can prove
THEOREM 3. FEach fundamental sequence u={u,=v(F,,v,;f.)}

which has the property (P) permit to define I[u] as a limit of sequence
of integrals:

Itu)=lim [ f@xe,@dv, f@)=lmf,@).

Finally we say that a fundamental sequence u={u,=v(F,, v,; f.)}
has the property (P*) if it satisfies, in addition to the property (P),
the following condition.

(6) There exists a positive integer k, k=2 (independent of =)
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which satisfies, for every n, n=0,1, 2,--., the inequality:
k'm(V_FnH)zm(V_Fn)'

If we denote & the set of all maximal collection g* each of which
contains at least one fundamental sequence having the property (P*).

Then we can prove

THEOREM 4. In the class &, the functions J[g*] (g*€®) form a
vector space (over the field of real numbers).

Theorem 3 and Theorem 4 together show that in the class &, the
number I[g*] is determined not only by g* but also by the function
JLg*].

Set J[g*]=S(x). We can write

I[g*]= f f (@) da.

Thus we can construct a new integral for functions defined on a
topological group.



