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(Comm. by Z. SUETUNA, M.J.A., Jan. 13, 1958)

In this paper, we shall prove Weil’s conjecture on zeta-functions
for algebraic varieties, defined over finite fields, having abelian varieties
as abelian (not necessarily unramified) coverings and also Lang’s analo-
gous conjecture on L-series for those coverings. Then we shall see some
interesting relation between the zeta-functions of such algebraic varie-
ties and those of their Albanese varieties. Moreover those results
will enable us to prove Hasse’s conjecture on zeta-functions for some
algebraic varieties defined over algebraic number fields. In the follow-
ing we shall use the definitions, notations and results of Weil’s book
[_6 often without references.

Here I wish to express my hearty gratitude to Prof. Z. Suetuna
for his encouragement and also to Mr. Y. Taniyama for his kind sug-
gestions.

1o Let V be a normal projective variety of dimension r, defined
over a finite field k with q elements; let A be an abelian variety such
that f: A--> V is a Galois (not necessarily unramified) covering, also
defined over k, with group G and of degree n (cf. Lang [2]). The
map a-->a for all points a on A determines an endomorphism of A,
which is denoted by r-r. Let x be a generic point of A over k.
Then, for a in G, the map x-->x induces a birational transformation
of A defined over k; hence we can write x=o(x)+ao where o is an
automorphism of A defined over k and ao is a rational point on A
over k.

Now we consider an endomorphism r--vo of A for a positive
rational integer m and for 6 in G. As k (vo(x))=k(.x), we have k(x,
(r--o)())=k(x) and so (r--o)= 1. Hence the order of the kernel
of this endomorphism is equal to det M(r--o), with a rational prime
different from the characteristic of k, which is denoted by ,(re, a).

As det M(vo)-I and the matrix Mt(rvj--l) is of even degree 2r, we
have also (m,)=det M(1--r).

Then the L-series L(u, ),A/V) of the covering A/V belonging to
an irreducible character :g of G is given by the following logarithmic
derivative:

d/du. log L(u, ), A/V)
Theorem 1. Let Z(u, V) and Z(u, A) be the zeta-functions of V

and A over k. Then we have the equality Z(u, V)--Z(u,A) if and
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only if V is also an abelian variety defined over k. When that is so,
G is abelian and A/V is unramified and, moreover, all the L-series
L(u,%,A/V) with % different from the principal character %o are
trivially equal to 1.

Proof. Generally we have
qod/du. {n. log (Z(u, A)/Z(u, Y))}-Z=i ,(-*,)-Zo,(m,)}u

We divide the sum in the right side of this equality as follows:

where Z ranges over all the cyclic subgroups of G (not excluding

Z={1}) and a, ranges over all the generators of Z. For each fixed
j, we can transform all the matrices M(%) and M() into diagonal
forms simultaneously:

0 0
Here we note that all ,,, are some roots of unity and, for each fixed
j and , all r are algebraically conjugate to each other. Then we
have

n. v(m, 1)--E(m, a)
--1++1’’’" (-- 1)t(n--Zj+j,i3:,l 3,’,t)(l t

and, by the above remark and by the equality n--%1, n,...,t=n
--z%, ,,’" ",*,t are non-negative rational integers. Hence we
have

d/du. {n. log (Z(u,A)/Z(u, V))}
-=,,,...,,(-1) ,,...,,(, "-a

and so
((, A)I2(, ))-,{,.,,..., ,(1-,... ,y,,...,

Then as, by Taniyama [], all ihe eharaterislie roots of M() are
of absolute values qv2, he equality (, V)-2(, A) implies thai all
,,...,,--0 and so all C],,,-l. Hence hen all are the
aulomorhism of A and so A/F is unramified. Therefore he ’only
if’ par of our heorem is proved. As for the ’if’ par, i is easily
verified because V is hen isoenous o A and M(y) and M() have
the same characteristic roos.

2. Theorem 2. If 8 6e[6%, e% e ze6-feo% (, V)
he L-,erie L(, x,A/V) o ezre,se s foZos:

2(u, )-P,(u)P(u)" B,-,(u)/P0(u)P(u). P(u),
(X) (X)(u,x, AlV)-Q, (u)e () ...e_( )le (x fuX

where Pt(u) and QiX)(u) are polynomials of u such that

with a) , m,)i q,/. Especially Po(u)-1--u and P(u)--1--qru.
Moreover if we put e=(--1)*deg P, and e(z)-t(-1)degQi), then
we have functional equations:
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Z(1/qu, V)-(-- 1)q/uZ(u, V),
L(1/qru, X, A/ V) --1)<Zqe/u<L(u, -, A/ V).

Proof. As G is abeliaa and commutes with every v, we can
transform all the matrices M(v) and Mt() into diagonal forms simul-
taneously:

Mt(v)-- ". Mt()-- ".

0 02r

Then the map a) is an irreducible character of G, which is denoted
by ; and we have ,(m,a)-det M(1--v;)--H(1--;(a))
----,...,(--1)(...’-.. .[(a). Hence we have, for any ir-
reducible character of G (not excluding the principal character 0),

d/du :,log L(u, , AV)==(--1),...,(...%)
{1/n. 1;

and so, by the orthogonal relation of group-characters, we have
d/du. log L(u, , A/ V)

Thus we have
L(u, A V)-

As all are of absolute values qm, our first statement is proved.
As for functional equations, it suffices to note that .. "r--detM()
=q" and .. "r(a)-det M()--l--0(a) for any a in G.

Remark. In the case where G is not necessarily abelian, using
the fundamental result of Artin on induced characters in 1 and
Theorem 2, we can also prove that the n-th powers of Z(u, V) and
L(u, , A/V) are polynomials of u and their zeros and poles are of
absolute values q-/ with 0<t<2r.. Now let B be an abelian variety, defined over k, which is
generated by V and a rational map of V into B (cf. Matsusaka 3).
Then Bof is a rational map of A into B and we may assume, without
loss of generality, that --f is a homomorphism of A into B and
then it is easily verified that is onto. As a-w(0)+a, we have
f(a)=f(O) and so (a)=(0)-0 for any a in G. If x is a generic
point of A over k, then we have (x)--(x)--(w(x)+a)--(v(x)) and
so ((v--l)(x))-0. Thus the kernel of must contain all the loci C
of (--1)(x) over k for all a in G. (Clearly C is an abelian subvariety
of A defined over k.) Conversely if, for an abelian variety B defined
over k, there exists a homomorphism of A onto B with kernel
containing all C, then there exists a rational map of V onto B
such that -- f.

Hence, by the characterization of Albanese varieties in Matsusaka
[3J, there exist an abelian variety B defined over k, which is isogenous
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to the Albanese variety of V, and a homomorphism of A onto B,
whose kernel is the smallest algebraic subgroup of A containing all Co.

Let G be abelian. Then for any a, r in G, we have (--1)
(,-- 1) (v,-- 1)(o-- 1) and so (.rio- 1)C, is contained in C,. Moreover, as
dim (v- 1)C dim (yo- 1)A 1/2. rankM,(-- 1) 1/2. rank M,(v-- 1)
=dim Co, we have also (-I)C=C. If we denote the elements of
G by a0=l, ,...,a_, then the 0-component of the kernel of our
homomorphism is clearly the locus C of (vo--l)(x)+...+(o_--1)
(x_) over k where x,..., x_ are independent generic points of A
over k; and then the dimension of C is given by ,, dim Co,--,<
dim(Co, fCo)+,<< dim (C**CoC,) (Here conveniently we
denote the dimension of a component of Co,C%...C% by
dim (Co,,C,....C%).) As ,--1 induces a homomorphism on the
0-component of C,C, with finite kernel, dim(Co, V1C)is equal to
the dimension of its image under v,-1, which is contained in (,--1)
(yo-- 1)A and so of dimension _< 1/2 rank Mt(--1)(-- 1). While, as
G is abelian, (,--1)(],--I)A is contained in the 0-component of

CoCo.. Hence we have dim (C,Co)-l/2.rank Mt(]o I)(o I);
and similarly dim (C%Co.... glC,.,)-l/2.rank M(y%--l)(yo,.--1)

.(y%-- 1). Therefore 2. dim C is equal to the number of such j’s
that :g0 (with the notations in the proof of Theorem 2). Now
let D be an abelian subvariety of A, defined over k, such that any
point a on A can be written as a-d+c with d in D and c in C and
DC is a finite subgroup of A. If D, is the 0-component of the
kernel of o,--1, then, as o,--1 has finite kernel on C**, Do,Co, is a
finite subgroup of A and so any point a on A can also be written as
a=d,+c, with d, in Do, and c, in Co. Hence D is contained in Do,
for any a, in G. Taking a prime which does not divide the order
of DC, we have (A)--.q,(D)+q,(C) (direct sum). Then as D and C
are defined over k, and as ,-1 is 0 on D and (o,--1)C is contained
in C for any a, in G, the matrices Mt(ra), Mt(o,--1) and Mt() are
of the following forms:

M,(r)-( M,(r,) 0 0 0
0 M(rc))’ Mt(7*--l)--(O No,)’

M.() (A 0),
where A is a non-singular matrix of degree 2. dim D-2. dim B; and
clearly we have AMt(r)A-=M(’). Moreover, by the above argu-
ment, 2.dim D is equal to the number of such 3"s that --X:o and so
all the characteristic roots of No, are equal to ((a,)--l)’s with
As B and the Albanese variety of V have the same zeta-functions,
we have the following additional statement to Theorem 2.

Theorem 3. If G is abelian and we write as usual (by Theorem 2)
Z(u, Y)-- P(u)P(u) P._(u)/Po(u)P.(u) P.r(U) and
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Z(u, A( V))-- P[(u)P(u). P,_I(u)/Po(u)P(u). P8(u),
where A(V) is the Albanese variety of V and s is the dimension of
A(V), then we have the equality P(u)=P(u).

4. Let V be a normal algebraic variety of dimension r, defined
over an algebraic number field k of finite degree; let A be an abelian
variety such that f:A->V is a Galois covering, defined over k, with
group G and of degree n. We assume, moreover, that V and A are
in some projective spaces. Then, by Shimura [4 and Taniyama [5,
almost all primes in k are ’non-exceptional’ for the covering A/V
in the following sense: if we denote the reduction modulo of an
object by the symbol (), fc). Ac)__> Vc) is a Galois covering, defined
over kco), with the same group G and of the same degree n and Ac)

is an abelian variety defined over kco).
Then we can define the L-series L(s, ),A/V)of the covering A/V

belonging to an irreducible character ) of G, by analogy with Hasse’s
zeta-functions of varieties, by

L(s, )d, AV)-HL((NO)-, )d, A(’/ V())
where p ranges over all the non-exceptional primes for the covering
A/V. Then the following theorem is an immediate eonsequenee of
Taniyama [5 and Theorem 2.

Theorem 4. If G is abelian and if o(A) contains a subfield of
degree 2r, then the zeta-function v(s) and the L-series L(s, X, A/V)
are expressed as products of L-functions of k with Gr6ssencharaktere’
except for some factors of products of ational functions of q-8 for
a finite number of q=Np.
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