1. On Zeta-Functions and L-Series of Algebraic Varieties

By Makoto Ishida
Mathematical Institute, University of Tokyo
(Comm. by Z. Suetuna, m.J.A., Jan. 13, 1958)

In this paper, we shall prove Weil's conjecture on zeta-functions for algebraic varieties, defined over finite fields, having abelian varieties as abelian (not necessarily unramified) coverings and also Lang's analogous conjecture on L-series for those coverings. Then we shall see some interesting relation between the zeta-functions of such algebraic varieties and those of their Albanese varieties. Moreover those results will enable us to prove Hasse's conjecture on zeta-functions for some algebraic varieties defined over algebraic number fields. In the following we shall use the definitions, notations and results of Weil's book [6] often without references.

Here I wish to express my hearty gratitude to Prof. Z. Suetuna for his encouragement and also to Mr. Y. Taniyama for his kind suggestions.

1. Let V be a normal projective variety of dimension r, defined over a finite field k with q elements; let A be an abelian variety such that $f: A \rightarrow V$ is a Galois (not necessarily unramified) covering, also defined over k, with group G and of degree n (cf. Lang [2]). The map $a \rightarrow a^{q}$ for all points a on A determines an endomorphism of A, which is denoted by $\pi=\pi_{A}$. Let x be a generic point of A over k. Then, for σ in G, the map $x \rightarrow x^{\sigma}$ induces a birational transformation of A defined over k; hence we can write $x^{\sigma}=\eta_{\sigma}(x)+a_{\sigma}$ where η_{σ} is an automorphism of A defined over k and a_{σ} is a rational point on A over k.

Now we consider an endomorphism $\pi^{m}-\eta_{\sigma}$ of A for a positive rational integer m and for σ in G. As $k\left(\eta_{\sigma}(x)\right)=k(x)$, we have $k\left(x^{q m}\right.$, $\left.\left(\pi^{m}-\eta_{\sigma}\right)(x)\right)=k(x)$ and so $\nu_{i}\left(\pi^{m}-\eta_{\sigma}\right)=1$. Hence the order of the kernel of this endomorphism is equal to $\operatorname{det} M_{l}\left(\pi^{m}-\eta_{\sigma}\right)$, with a rational prime l different from the characteristic of k, which is denoted by $\nu(m, \sigma)$. As det $M_{l}\left(\eta_{\sigma}\right)=1$ and the matrix $M_{l}\left(\pi^{m} \eta_{\sigma}^{-1}-1\right)$ is of even degree $2 r$, we have also $\nu(m, \sigma)=\operatorname{det} M_{l}\left(1-\pi^{m} \eta_{\sigma}^{-1}\right)$.

Then the L-series $L(u, \chi, A / V)$ of the covering A / V belonging to an irreducible character χ of G is given by the following logarithmic derivative:

$$
d / d u \cdot \log L(u, \chi, A / V)=\sum_{m=1}^{\infty}\left\{1 / n \cdot \sum_{\sigma \in G} \chi(\sigma) \nu(m, \sigma)\right\} u^{m-1}
$$

Theorem 1. Let $Z(u, V)$ and $Z(u, A)$ be the zeta-functions of V and A over k. Then we have the equality $Z(u, V)=Z(u, A)$ if and
only if V is also an abelian variety defined over k. When that is so, G is abelian and A / V is unramified and, moreover, all the L-series $L(u, \chi, A / V)$ with χ different from the principal character χ_{0} are trivially equal to 1.

Proof. Generally we have
$\left.d / d u \cdot\{n \cdot \log (Z(u, A) / Z(u, V))\}=\sum_{m=1}^{\infty}\left\{n \cdot \nu(m, 1)-\sum_{\sigma \in G \nu} \nu, \sigma\right)\right\} u^{m-1}$.
We divide the sum \sum_{o} in the right side of this equality as follows:

$$
\sum_{\sigma}=\sum_{z_{j}} \sum_{\sigma_{j, i}}
$$

where Z_{j} ranges over all the cyclic subgroups of G (not excluding $Z=\{1\}$) and $\sigma_{j, i}$ ranges over all the generators of Z_{j}. For each fixed j, we can transform all the matrices $M_{l}\left(\eta_{\sigma_{j, i}}\right)$ and $M_{l}(\pi)$ into diagonal forms simultaneously:

$$
M_{l}\left(\eta_{\sigma_{j, i}}\right)=\left(\begin{array}{lll}
\cdot & & 0 \\
& \zeta_{j, i, \mu} & \\
0 & & \ddots
\end{array}\right), \quad M_{l}(\pi)=\left(\begin{array}{ll}
\ddots & 0 \\
& \pi_{\mu} \\
& \\
0 & \\
& \ddots
\end{array}\right) .
$$

Here we note that all $\zeta_{j, i, \mu}$ are some roots of unity and, for each fixed j and μ, all $\zeta_{j, i, \mu}$ are algebraically conjugate to each other. Then we have

$$
\begin{aligned}
& n \cdot \nu(m, 1)-\sum_{\sigma} \nu(m, \sigma) \\
& \quad=\sum_{t} \sum_{\mu_{1}, \cdots, \mu_{t}}(-1)^{t}\left(n-\sum_{z_{j}} \sum_{\sigma_{j, i}} \sigma_{\bar{j}, i, \mu_{1}}^{-1} \cdots \zeta_{j, i, \mu_{t}}^{-1}\right)\left(\pi_{\mu_{1}} \cdots \pi_{\mu_{t}}\right)^{m} \text {, }
\end{aligned}
$$

and, by the above remark and by the equality $n=\sum_{z_{j}} \sum_{\sigma_{j, i}} 1, n_{\mu_{1}}, \ldots, \mu_{t}=n$ $-\sum_{z_{j}} \sum_{\sigma_{j, i}} \zeta_{-i, i, \mu_{1}}^{-1} \cdots \zeta_{j, i, \mu_{t}}^{-1}$ are non-negative rational integers. Hence we have

$$
\begin{aligned}
& d / d u \cdot\{n \cdot \log (Z(u, A) / Z(u, V))\} \\
& \quad=\sum_{m=1}^{\infty} \sum_{t} \sum_{\mu_{1}, \cdots, \mu_{t}}(-1)^{t} n_{\mu_{1}}, \cdots, \mu_{t}\left(\pi_{\mu_{1}} \cdots \pi_{\mu_{t}}\right)^{m} u^{m-1},
\end{aligned}
$$

and so

$$
(Z(u, A) / Z(u, V))^{n}=\Pi_{t}\left\{\Pi_{\mu_{1}, \cdots, \mu_{t}}\left(1-\pi_{\mu_{1}} \cdots \pi_{\mu_{t}} u\right)^{\left.n_{\mu_{1}}, \ldots, \mu_{t}\right\}^{(-1)^{t+1}} .}\right.
$$

Then as, by Taniyama [5], all the characteristic roots π_{μ} of $M_{l}(\pi)$ are of absolute values $q^{1 / 2}$, the equality $Z(u, V)=Z(u, A)$ implies that all $n_{\mu_{1}, \cdots, \mu_{t}}=0$ and so all $\zeta_{j, i, \mu}=1$. Hence then all η_{σ} are the identity automorphism of A and so A / V is unramified. Therefore the 'only if' part of our theorem is proved. As for the 'if' part, it is easily verified because V is then isogenous to A and $M_{l}\left(\pi_{V}\right)$ and $M_{l}\left(\pi_{A}\right)$ have the same characteristic roots.
2. Theorem 2. If G is abelian, then the zeta-function $Z(u, V)$ and the L-series $L(u, \chi, A / V)$ with $\chi \neq \chi_{0}$ are expressed as follows:

$$
\begin{aligned}
& Z(u, V)=P_{1}(u) P_{3}(u) \cdots P_{2 r-1}(u) / P_{0}(u) P_{2}(u) \cdots P_{2 r}(u), \\
& L(u, \chi, A / V)=Q_{1}^{(x)}(u) Q_{3}^{(x)}(u) \cdots Q_{2 r-1}^{(x)}(u) / Q_{2}^{(x)}(u) \cdots Q_{2 r-2}^{(x)}(u),
\end{aligned}
$$

where $P_{t}(u)$ and $Q_{t}^{(x)}(u)$ are polynomials of u such that

$$
P_{t}(u)=\Pi_{j}\left(1-\alpha_{j}^{(t)} u\right), \quad Q_{t}^{(x)}(u)=\Pi_{j}\left(1-\beta_{j}^{(t, x)} u\right)
$$

with $\left|\alpha_{j}^{(t)}\right|,\left|\beta_{j}^{(t, x)}\right|=q^{t / 2}$. Especially $P_{0}(u)=1-u$ and $P_{2 r}(u)=1-q^{r} u$. Moreover if we put $e=\sum_{t}(-1)^{t} d e g P_{t}$ and $e(\chi)=\sum_{t}(-1)^{t} d e g Q_{t}^{(x)}$, then we have functional equations:

$$
\begin{gathered}
Z\left(1 / q^{r} u, V\right)=(-1)^{e} q^{r e / 2} u^{e} Z(u, V), \\
L\left(1 / q^{r} u, \chi, A / V\right)=(-1)^{e(x)} q^{r e(x) / 2} u^{e(x)} L(u, \bar{\chi}, A / V) .
\end{gathered}
$$

Proof. As G is abelian and π commutes with every η_{σ}, we can transform all the matrices $M_{l}\left(\eta_{\sigma}\right)$ and $M_{l}(\pi)$ into diagonal forms simultaneously:

$$
M_{l}\left(\eta_{\sigma}\right)=\left(\begin{array}{cc}
\zeta_{1}^{(\sigma)} & 0 \\
\ddots & \\
0 & \zeta_{2 r}^{(\sigma)}
\end{array}\right), \quad M_{l}(\pi)=\left(\begin{array}{cc}
\pi_{1} & \\
\ddots & 0 \\
0 & \ddots \\
0 & \pi_{2 r}
\end{array}\right) .
$$

Then the $\operatorname{map} \sigma \rightarrow \zeta_{j}^{(\sigma)}$ is an irreducible character of G, which is denoted by λ_{j}; and we have $\nu(m, \sigma)=\operatorname{det} M_{l}\left(1-\pi^{m} \eta_{\sigma}^{-1}\right)=\Pi_{\mu}\left(1-\pi_{\mu}^{m} \lambda_{\mu}^{-1}(\sigma)\right)$ $=\sum_{t} \sum_{\mu_{1}, \cdots, \mu_{t}}(-1)^{t}\left(\pi_{\mu_{1}} \cdots \pi_{\mu_{t}}\right)^{m} \lambda_{\mu_{1}}^{-1} \cdots \lambda_{\mu_{t}}^{-1}(\sigma)$. Hence we have, for any irreducible character χ of G (not excluding the principal character χ_{0}),

$$
\begin{gathered}
d / d u ; \log L(u, \chi, A / V)=\sum_{m=1}^{\infty} \sum_{t}(-1)^{t} \sum_{\mu_{1}, \cdots, \mu_{t}}\left(\pi_{\mu_{1}} \cdots \pi_{\mu_{t}}\right)^{m} \\
\times\left\{1 / n \cdot \sum_{\sigma \in G} \chi(\sigma) \lambda_{\mu_{1}}^{-1} \cdots \lambda_{\mu_{t}}^{-1}(\sigma)\right\} u^{m-1} ;
\end{gathered}
$$

and so, by the orthogonal relation of group-characters, we have $d / d u \cdot \log L(u, \chi, A / V)$

$$
=\sum_{m=1}^{\infty} \sum_{t}(-1)^{t} \sum_{\mu_{1}, \cdots, \mu_{t}: x=\lambda_{\mu_{1}} \cdots \lambda_{\mu_{t}}}\left(\pi_{\mu_{1}} \cdots \pi_{\mu_{t}}\right)^{m} u^{m-1}
$$

Thus we have

$$
L(u, \chi, A / V)=\Pi_{t}\left\{\Pi_{\mu_{1}, \cdots, \mu_{t}: x=\lambda_{\mu_{1}} \cdots \lambda_{\mu_{t}}}\left(1-\pi_{\mu_{1}} \cdots \pi_{\mu_{t}} u\right)\right\}^{(-1)^{t+1}}
$$

As all π_{μ} are of absolute values $q^{1 / 2}$, our first statement is proved. As for functional equations, it suffices to note that $\pi_{1} \pi_{2} \cdots \pi_{2 r}=\operatorname{det} M_{l}(\pi)$ $=q^{r}$ and $\lambda_{1} \lambda_{2} \cdots \lambda_{2 r}(\sigma)=\operatorname{det} M_{l}\left(\eta_{\sigma}\right)=1=\chi_{0}(\sigma)$ for any σ in G.

Remark. In the case where G is not necessarily abelian, using the fundamental result of Artin on induced characters in [1] and Theorem 2, we can also prove that the n-th powers of $Z(u, V)$ and $L(u, \chi, A / V)$ are polynomials of u and their zeros and poles are of absolute values $q^{-t / 2}$ with $0 \leq t \leq 2 r$.
3. Now let B be an abelian variety, defined over k, which is generated by V and a rational map β of V into B (cf. Matsusaka [3]). Then $\beta \circ f$ is a rational map of A into B and we may assume, without loss of generality, that $\lambda=\beta \circ f$ is a homomorphism of A into B and then it is easily verified that λ is onto. As $a_{\sigma}=\eta_{\sigma}(0)+a_{\sigma}$, we have $f\left(a_{\sigma}\right)=f(0)$ and so $\lambda\left(a_{\sigma}\right)=\lambda(0)=0$ for any σ in G. If x is a generic point of A over k, then we have $\lambda(x)=\lambda\left(x^{\sigma}\right)=\lambda\left(\eta_{\sigma}(x)+a_{\sigma}\right)=\lambda\left(\eta_{\sigma}(x)\right)$ and so $\lambda\left(\left(\eta_{\sigma}-1\right)(x)\right)=0$. Thus the kernel of λ must contain all the loci C_{σ} of $\left(\eta_{\sigma}-1\right)(x)$ over k for all σ in G. (Clearly C_{σ} is an abelian subvariety of A defined over k.) Conversely if, for an abelian variety B defined over k, there exists a homomorphism λ of A onto B with kernel containing all C_{σ}, then there exists a rational map β of V onto B such that $\lambda=\beta \circ f$.

Hence, by the characterization of Albanese varieties in Matsusaka [3], there exist an abelian variety B defined over k, which is isogenous
to the Albanese variety of V, and a homomorphism λ of A onto B, whose kernel is the smallest algebraic subgroup of A containing all C_{σ}.

Let G be abelian. Then for any σ, τ in G, we have ($\eta_{\sigma}-1$) $\left(\eta_{\tau}-1\right)=\left(\eta_{\tau}-1\right)\left(\eta_{\sigma}-1\right)$ and so $\left(\eta_{\sigma}-1\right) C_{\tau}$ is contained in C_{τ}. Moreover, as $\operatorname{dim}\left(\eta_{\sigma}-1\right) C_{\sigma}=\operatorname{dim}\left(\eta_{\sigma}-1\right)^{2} A=1 / 2 \cdot \operatorname{rank} M_{l}\left(\eta_{\sigma}-1\right)^{2}=1 / 2 \cdot \operatorname{rank} M_{l}\left(\eta_{\sigma}-1\right)$ $=\operatorname{dim} C_{\sigma}$, we have also $\left(\eta_{\sigma}-1\right) C_{\sigma}=C_{\sigma}$. If we denote the elements of G by $\sigma_{0}=1, \sigma_{1}, \cdots, \sigma_{n-1}$, then the 0 -component of the kernel of our homomorphism λ is clearly the locus C of $\left(\eta_{\sigma_{1}}-1\right)\left(x_{1}\right)+\cdots+\left(\eta_{\sigma_{n-1}}-1\right)$ $\left(x_{n-1}\right)$ over k where x_{1}, \cdots, x_{n-1} are independent generic points of A over k; and then the dimension of C is given by $\sum_{i} \operatorname{dim} C_{\sigma_{i}}-\sum_{i<j}$ $\operatorname{dim}\left(C_{\sigma_{i}} \cap C_{\sigma_{j}}\right)+\sum_{i<j<h} \operatorname{dim}\left(C_{\sigma_{i}} \cap C_{\sigma_{j}} \cap C_{\sigma_{h}}\right)-\cdots$. (Here conveniently we denote the dimension of a component of $C_{\sigma_{i_{1}}} \cap C_{\sigma_{i_{2}}} \cap \cdots \cap C_{\sigma_{i_{t}}}$ by $\operatorname{dim}\left(C_{\sigma_{i_{1}}} \cap C_{\sigma_{i_{2}}} \cap \cdots \cap C_{\sigma_{i_{t}}}\right)$.) As $\eta_{\sigma_{i}}-1$ induces a homomorphism on the 0 -component of $C_{\sigma_{i}} \cap C_{\sigma_{j}}$ with finite kernel, $\operatorname{dim}\left(C_{\sigma_{i}} \cap C_{\sigma_{j}}\right)$ is equal to the dimension of its image under $\eta_{\sigma_{i}}-1$, which is contained in ($\eta_{\sigma_{i}}-1$) ($\eta_{\sigma_{j}}-1$) A and so of dimension $\leq 1 / 2$ rank $M_{l}\left(\eta_{\sigma_{i}}-1\right)\left(\eta_{\sigma_{j}}-1\right)$. While, as G is abelian, $\left(\eta_{\sigma_{i}}-1\right)\left(\eta_{\sigma_{j}}-1\right) A$ is contained in the 0 -component of $C_{\sigma_{i}} \cap C_{\sigma_{j}}$. Hence we have $\operatorname{dim}\left(C_{\sigma_{i}} \cap C_{\sigma_{j}}\right)=1 / 2 \cdot \operatorname{rank} M_{l}\left(\eta_{\sigma_{i}}-1\right)\left(\eta_{\sigma_{j}}-1\right) ;$ and similarly $\operatorname{dim}\left(C_{\sigma_{i_{1}}} \cap C_{\sigma_{i_{2}}} \cap \cdots \cap C_{\sigma_{i_{t}}}\right)=1 / 2 \cdot \operatorname{rank} M_{\imath}\left(\eta_{\sigma_{i_{1}}}-1\right)\left(\eta_{\sigma_{i_{2}}}-1\right)$ $\cdots\left(\eta_{\sigma_{i_{t}}}-1\right)$. Therefore $2 \cdot \operatorname{dim} C$ is equal to the number of such j 's that $\lambda_{j} \neq \chi_{0}$ (with the notations in the proof of Theorem 2). Now let D be an abelian subvariety of A, defined over k, such that any point a on A can be written as $\alpha=d+c$ with d in D and c in C and $D \cap C$ is a finite subgroup of A. If $D_{\sigma_{i}}$ is the 0 -component of the kernel of $\eta_{\sigma_{i}}-1$, then, as $\eta_{\sigma_{i}}-1$ has finite kernel on $C_{\sigma_{i}}, D_{\sigma_{i}} \cap C_{\sigma_{i}}$ is a finite subgroup of A and so any point a on A can also be written as $a=d_{i}+c_{i}$ with d_{i} in $D_{\sigma_{i}}$ and c_{i} in $C_{\sigma_{i}}$. Hence D is contained in $D_{\sigma_{i}}$ for any σ_{i} in G. Taking a prime l which does not divide the order of $D \cap C$, we have $\mathfrak{g}_{l}(A)=\mathfrak{g}_{l}(D)+\mathfrak{g}_{l}(C)$ (direct sum). Then as D and C are defined over k, and as $\eta_{\sigma_{i}}-1$ is 0 on D and $\left(\eta_{\sigma_{i}}-1\right) C$ is contained in C for any σ_{i} in G, the matrices $M_{l}\left(\pi_{A}\right), M_{l}\left(\eta_{\sigma_{i}}-1\right)$ and $M_{l}(\lambda)$ are of the following forms:

$$
\begin{aligned}
& M_{l}\left(\pi_{A}\right)=\left(\begin{array}{cc}
M_{l}\left(\pi_{D}\right) & 0 \\
0 & M_{l}\left(\pi_{0}\right)
\end{array}\right), \quad M_{l}\left(\eta_{\sigma_{i}}-1\right)=\left(\begin{array}{cc}
0 & 0 \\
0 & N_{\sigma_{i}}
\end{array}\right), \\
& M_{l}(\lambda)=\left(\begin{array}{ll}
\Lambda & 0
\end{array}\right),
\end{aligned}
$$

where Λ is a non-singular matrix of degree $2 \cdot \operatorname{dim} D=2 \cdot \operatorname{dim} B$; and clearly we have $\Lambda M_{l}\left(\pi_{D}\right) \Lambda^{-1}=M_{l}\left(\pi_{B}\right)$. Moreover, by the above argument, $2 \cdot \operatorname{dim} D$ is equal to the number of such j 's that $\lambda_{j}=\chi_{0}$ and so all the characteristic roots of $N_{\sigma_{i}}$ are equal to $\left(\lambda_{j}\left(\sigma_{i}\right)-1\right)$'s with $\lambda_{j} \neq \chi_{0}$. As B and the Albanese variety of V have the same zeta-functions, we have the following additional statement to Theorem 2.

Theorem 3. If G is abelian and we write as usual (by Theorem 2)

$$
Z(u, V)=P_{1}(u) P_{3}(u) \cdots P_{2 r-1}(u) / P_{0}(u) P_{2}(u) \cdots P_{2 r}(u) \quad \text { and }
$$

$$
Z(u, A(V))=P_{1}^{\prime}(u) P_{3}^{\prime}(u) \cdots P_{2 s-1}^{\prime}(u) / P_{0}^{\prime}(u) P_{2}^{\prime}(u) \cdots P_{2 \rho}^{\prime}(u),
$$

where $A(V)$ is the Albanese variety of V and s is the dimension of $A(V)$, then we have the equality $P_{1}(u)=P_{1}^{\prime}(u)$.
4. Let V be a normal algebraic variety of dimension r, defined over an algebraic number field k of finite degree; let A be an abelian variety such that $f: A \rightarrow V$ is a Galois covering, defined over k, with group G and of degree n. We assume, moreover, that V and A are in some projective spaces. Then, by Shimura [4] and Taniyama [5], almost all primes \mathfrak{p} in k are 'non-exceptional' for the covering A / V in the following sense: if we denote the reduction modulo \mathfrak{p} of an object by the symbol $(\mathfrak{p}), f^{(p)}: A^{(p)} \rightarrow V^{(p)}$ is a Galois covering, defined over $k^{(p)}$, with the same group G and of the same degree n and $A^{(p)}$ is an abelian variety defined over $k^{(\varphi)}$.

Then we can define the L-series $L(s, \chi, A / V)$ of the covering A / V belonging to an irreducible character χ of G, by analogy with Hasse's zeta-functions of varieties, by

$$
L(s, \chi, A / V)=\Pi_{p}^{\prime} L\left((N \mathfrak{p})^{-s}, \chi, A^{(p)} / V^{(p)}\right)
$$

where \mathfrak{p} ranges over all the non-exceptional primes for the covering A / V. Then the following theorem is an immediate consequence of Taniyama [5] and Theorem 2.

Theorem 4. If G is abelian and if $\mathcal{A}_{0}(A)$ contains a subfield of degree $2 r$, then the zeta-function $\zeta_{V}(s)$ and the L-series $L(s, \chi, A / V)$ are expressed as products of L-functions of k with 'Grössencharaktere' except for some factors of products of rational functions of q^{-8} for a finite number of $q=N \mathrm{p}$.

References

[1] E. Artin: Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren, Abh. Math. Sem. Univ. Hamburg, 8, 292-306 (1930).
[2] S. Lang: Unramified class field theory over function fields in several variables, Ann. Math., 64, 285-325 (1956).
[3] T. Matsusaka: On the algebraic construction of the Picard varieties II, Jap. Jour. Math., 22, 51-62 (1952).
[4] G. Shimura: Reduction of algebraic varieties with respect to a discrete valuation of the basic field, Amer. Jour. Math., 77, 134-176 (1955).
[5] Y. Taniyama: Jacobian varieties and number fields, Proc. Int. Symposium on Algebraic Number Theory, Tokyo-Nikko, 31-45 (1955).
[6] A. Weil: Variétés Abéliennes et Courbes Algébriques, Paris (1948).

