1. On Zeta-Functions and L-Series of Algebraic Varieties

By Makoto Ishida

Mathematical Institute, University of Tokyo (Comm. by Z. SUETUNA, M.J.A., Jan. 13, 1958)

In this paper, we shall prove Weil's conjecture on zeta-functions for algebraic varieties, defined over finite fields, having abelian varieties as abelian (not necessarily unramified) coverings and also Lang's analogous conjecture on L-series for those coverings. Then we shall see some interesting relation between the zeta-functions of such algebraic varieties and those of their Albanese varieties. Moreover those results will enable us to prove Hasse's conjecture on zeta-functions for some algebraic varieties defined over algebraic number fields. In the following we shall use the definitions, notations and results of Weil's book [6] often without references.

Here I wish to express my hearty gratitude to Prof. Z. Suetuna for his encouragement and also to Mr. Y. Taniyama for his kind suggestions.

1. Let V be a normal projective variety of dimension r, defined over a finite field k with q elements; let A be an abelian variety such that $f: A \to V$ is a Galois (not necessarily unramified) covering, also defined over k, with group G and of degree n (cf. Lang [2]). The map $a \to a^q$ for all points a on A determines an endomorphism of A, which is denoted by $\pi = \pi_A$. Let x be a generic point of A over k. Then, for σ in G, the map $x \to x^{\sigma}$ induces a birational transformation of A defined over k; hence we can write $x^{\sigma} = \eta_{\sigma}(x) + a_{\sigma}$ where η_{σ} is an automorphism of A defined over k and a_{σ} is a rational point on A over k.

Now we consider an endomorphism $\pi^m - \eta_\sigma$ of A for a positive rational integer m and for σ in G. As $k(\eta_\sigma(x)) = k(x)$, we have $k(x^{q^m}, (\pi^m - \eta_\sigma)(x)) = k(x)$ and so $\nu_i(\pi^m - \eta_\sigma) = 1$. Hence the order of the kernel of this endomorphism is equal to det $M_l(\pi^m - \eta_\sigma)$, with a rational prime l different from the characteristic of k, which is denoted by $\nu(m, \sigma)$. As det $M_l(\eta_\sigma) = 1$ and the matrix $M_l(\pi^m \eta_\sigma^{-1} - 1)$ is of even degree 2r, we have also $\nu(m, \sigma) = \det M_l(1 - \pi^m \eta_\sigma^{-1})$.

Then the L-series $L(u, \chi, A/V)$ of the covering A/V belonging to an irreducible character χ of G is given by the following logarithmic derivative:

 $d/du \cdot \log L(u, \chi, A/V) = \sum_{m=1}^{\infty} \{1/n \cdot \sum_{\sigma \in G} \chi(\sigma) \nu(m, \sigma)\} u^{m-1}$

Theorem 1. Let Z(u, V) and Z(u, A) be the zeta-functions of V and A over k. Then we have the equality Z(u, V) = Z(u, A) if and M. Ishida

only if V is also an abelian variety defined over k. When that is so, G is abelian and A/V is unramified and, moreover, all the L-series $L(u, \chi, A/V)$ with χ different from the principal character χ_0 are trivially equal to 1.

Proof. Generally we have

 $d/du \cdot \{n \cdot \log (Z(u, A)/Z(u, V))\} = \sum_{m=1}^{\infty} \{n \cdot \nu(m, 1) - \sum_{\sigma \in G} \nu(m, \sigma)\} u^{m-1}.$ We divide the sum \sum_{σ} in the right side of this equality as follows: $\sum_{\sigma} = \sum_{Z_j} \sum_{\sigma_{j,i}},$

where Z_j ranges over all the cyclic subgroups of G (not excluding $Z=\{1\}$) and $\sigma_{j,i}$ ranges over all the generators of Z_j . For each fixed j, we can transform all the matrices $M_l(\eta_{\sigma_{i,j}})$ and $M_l(\pi)$ into diagonal forms simultaneously:

$$M_{\scriptscriptstyle l}(\eta_{\sigma_{j,i}}) \!=\! \begin{pmatrix} \ddots & 0 \ \zeta_{_{j,i,\mu}} \ 0 & \ddots \end{pmatrix}, \quad M_{\scriptscriptstyle l}(\pi) \!=\! \begin{pmatrix} \ddots & 0 \ \pi_{\mu} \ 0 & \ddots \end{pmatrix}.$$

Here we note that all $\zeta_{j,i,\mu}$ are some roots of unity and, for each fixed j and μ , all $\zeta_{j,i,\mu}$ are algebraically conjugate to each other. Then we have

$$n \cdot
u(m, 1) - \sum_{\sigma}
u(m, \sigma) = \sum_t \sum_{\mu_1, \dots, \mu_t} (-1)^t (n - \sum_{Z_j} \sum_{\sigma_{j,i}} \zeta_{j,i,\mu_1}^{-1} \cdots \zeta_{j,i})$$

 $\cdot \zeta_{j,i,\mu_t}^{-1})(\pi_{\mu_1}\cdots\pi_{\mu_t})^m,$ and, by the above remark and by the equality $n = \sum_{z_j} \sum_{\sigma_{j,i}} 1$, $n_{\mu_1,...,\mu_t} = n$ $-\sum_{Z_j}\sum_{\sigma_{j,i}}\zeta_{j,i,\mu_1}^{-1}\cdots\zeta_{j,i,\mu_t}^{-1}$ are non-negative rational integers. Hence we have

$$d/du \cdot \{n \cdot \log \left(Z(u,A)/Z(u,V)
ight)\} = \sum_{m=1}^{\infty} \sum_{t} \sum_{\mu_1, \dots, \mu_t} (-1)^t n_{\mu_1, \dots, \mu_t} (\pi_{\mu_1} \cdots \pi_{\mu_t})^m u^{m-1},$$

and so

 $(Z(u, A)/Z(u, V))^n = \prod_t \{ \prod_{\mu_1, \dots, \mu_t} (1 - \pi_{\mu_1} \cdots \pi_{\mu_t} u)^{n_{\mu_1}, \dots, \mu_t} \}^{(-1)^{t+1}}.$

Then as, by Taniyama [5], all the characteristic roots π_{μ} of $M_{l}(\pi)$ are of absolute values $q^{1/2}$, the equality Z(u, V) = Z(u, A) implies that all $n_{\mu_1,\dots,\mu_t}=0$ and so all $\zeta_{j,i,\mu}=1$. Hence then all η_{σ} are the identity automorphism of A and so A/V is unramified. Therefore the 'only if' part of our theorem is proved. As for the 'if' part, it is easily verified because V is then isogenous to A and $M_{l}(\pi_{V})$ and $M_{l}(\pi_{A})$ have the same characteristic roots.

2. Theorem 2. If G is abelian, then the zeta-function Z(u, V)and the L-series $L(u, \chi, A/V)$ with $\chi \neq \chi_0$ are expressed as follows:

$$Z(u, V) = P_1(u)P_3(u)\cdots P_{2r-1}(u)/P_0(u)P_2(u)\cdots P_{2r}(u),$$

$$L(u, \chi, A/V) = Q_1^{(\chi)}(u)Q_3^{(\chi)}(u) \cdots Q_{2r-1}^{(\chi)}(u)/Q_2^{(\chi)}(u) \cdots Q_{2r-2}^{(\chi)}(u),$$

where $P_i(u)$ and $Q_i^{(\chi)}(u)$ are polynomials of u such that $P_t(u) = \prod_j (1 - \alpha_j^{(t)}u), \quad Q_t^{(\chi)}(u) = \prod_j (1 - \beta_j^{(t,\chi)}u)$

with $|\alpha_{j}^{(t)}|, |\beta_{j}^{(t,\chi)}| = q^{t/2}$. Especially $P_{0}(u) = 1 - u$ and $P_{2r}(u) = 1 - q^{r}u$. Moreover if we put $e = \sum_{t} (-1)^{t} deg P_{t}$ and $e(\chi) = \sum_{t} (-1)^{t} deg Q_{t}^{(\chi)}$, then we have functional equations:

No. 1]

On Zeta-Functions and L-Series of Algebraic Varieties

$$Z(1/q^{r}u, V) = (-1)^{eq^{re/2}u^{e}}Z(u, V),$$

$$L(1/q^{r}u, \chi, A/V) = (-1)^{e(\chi)}q^{re(\chi)/2}u^{e(\chi)}L(u, \overline{\chi}, A/V).$$

Proof. As G is abelian and π commutes with every η_{σ} , we can transform all the matrices $M_{l}(\eta_{\sigma})$ and $M_{l}(\pi)$ into diagonal forms simultaneously:

$$M_{l}(\eta_{\sigma}) = \begin{pmatrix} \zeta_{1}^{(\sigma)} & 0 \\ \cdot & \cdot \\ 0 & \zeta_{2r}^{(\sigma)} \end{pmatrix}, \quad M_{l}(\pi) = \begin{pmatrix} \pi_{1} & 0 \\ \cdot & \cdot \\ 0 & \pi_{2r} \end{pmatrix}.$$

Then the map $\sigma \to \zeta_j^{(\sigma)}$ is an irreducible character of G, which is denoted by λ_j ; and we have $\nu(m, \sigma) = \det M_l(1 - \pi^m \eta_{\sigma}^{-1}) = \prod_{\mu} (1 - \pi^m_{\mu} \lambda_{\mu}^{-1}(\sigma))$ $= \sum_t \sum_{\mu_1, \dots, \mu_t} (-1)^t (\pi_{\mu_1} \cdots \pi_{\mu_t})^m \lambda_{\mu_1}^{-1} \cdots \lambda_{\mu_t}^{-1}(\sigma)$. Hence we have, for any irreducible character χ of G (not excluding the principal character χ_0),

$$\frac{d/du, \log L(u, \chi, A/V) = \sum_{m=1}^{\infty} \sum_{t} (-1)^t \sum_{\mu_1, \dots, \mu_t} (\pi_{\mu_1} \cdots \pi_{\mu_t}) }{\times \{1/n \cdot \sum_{\sigma \in G} \chi(\sigma) \lambda_{\mu_1}^{-1} \cdots \lambda_{\mu_t}^{-1}(\sigma) \} u^{m-1}; }$$

and so, by the orthogonal relation of group-characters, we have $d/du \cdot \log L(u, \chi, A/V)$

$$=\sum_{m=1}^{\infty}\sum_{t}(-1)^{t}\sum_{\mu_{1},\dots,\mu_{t}:\ \chi=\lambda_{\mu_{1}}\dots\lambda_{\mu_{t}}}(\pi_{\mu_{1}}\cdots\pi_{\mu_{t}})^{m}u^{m-1}.$$

Thus we have

 $L(u, \chi, A/V) = \prod_{t} \{\prod_{\mu_{1}, \dots, \mu_{t} : \chi = \lambda_{\mu_{1}} \cdots \lambda_{\mu_{t}}} (1 - \pi_{\mu_{1}} \cdots \pi_{\mu_{t}} u)\}^{(-1)^{t+1}}.$ As all π_{μ} are of absolute values $q^{1/2}$, our first statement is proved. As for functional equations, it suffices to note that $\pi_{1}\pi_{2} \cdots \pi_{2r} = \det M_{l}(\pi)$ $= q^{r} \text{ and } \lambda_{1}\lambda_{2} \cdots \lambda_{2r}(\sigma) = \det M_{l}(\eta_{\sigma}) = 1 = \chi_{0}(\sigma) \text{ for any } \sigma \text{ in } G.$

Remark. In the case where G is not necessarily abelian, using the fundamental result of Artin on induced characters in [1] and Theorem 2, we can also prove that the n-th powers of Z(u, V) and $L(u, \chi, A/V)$ are polynomials of u and their zeros and poles are of absolute values $q^{-t/2}$ with $0 \le t \le 2r$.

3. Now let B be an abelian variety, defined over k, which is generated by V and a rational map β of V into B (cf. Matsusaka [3]). Then $\beta \circ f$ is a rational map of A into B and we may assume, without loss of generality, that $\lambda = \beta \circ f$ is a homomorphism of A into B and then it is easily verified that λ is onto. As $a_{\sigma} = \eta_{\sigma}(0) + a_{\sigma}$, we have $f(a_{\sigma}) = f(0)$ and so $\lambda(a_{\sigma}) = \lambda(0) = 0$ for any σ in G. If x is a generic point of A over k, then we have $\lambda(x) = \lambda(x^{\sigma}) = \lambda(\eta_{\sigma}(x) + a_{\sigma}) = \lambda(\eta_{\sigma}(x))$ and so $\lambda((\eta_{\sigma} - 1)(x)) = 0$. Thus the kernel of λ must contain all the loci C_{σ} of $(\eta_{\sigma} - 1)(x)$ over k for all σ in G. (Clearly C_{σ} is an abelian subvariety of A defined over k.) Conversely if, for an abelian variety B defined over k, there exists a homomorphism λ of A onto B with kernel containing all C_{σ} , then there exists a rational map β of V onto B such that $\lambda = \beta \circ f$.

Hence, by the characterization of Albanese varieties in Matsusaka [3], there exist an abelian variety B defined over k, which is isogenous

M. Ishida

to the Albanese variety of V, and a homomorphism λ of A onto B, whose kernel is the smallest algebraic subgroup of A containing all C_{σ} .

Let G be abelian. Then for any σ , τ in G, we have $(\eta_{\sigma}-1)$ $(\eta_{\tau}-1)=(\eta_{\tau}-1)(\eta_{\sigma}-1)$ and so $(\eta_{\sigma}-1)C_{\tau}$ is contained in C_{τ} . Moreover, as $\dim (\eta_{\sigma} - 1)C_{\sigma} = \dim (\eta_{\sigma} - 1)^{2}A = 1/2 \cdot \operatorname{rank} M_{l}(\eta_{\sigma} - 1)^{2} = 1/2 \cdot \operatorname{rank} M_{l}(\eta_{\sigma} - 1)$ $=\dim C_{\sigma}$, we have also $(\eta_{\sigma}-1)C_{\sigma}=C_{\sigma}$. If we denote the elements of G by $\sigma_0=1, \sigma_1, \dots, \sigma_{n-1}$, then the 0-component of the kernel of our homomorphism λ is clearly the locus C of $(\eta_{\sigma_1}-1)(x_1)+\cdots+(\eta_{\sigma_{n-1}}-1)$ (x_{n-1}) over k where x_1, \dots, x_{n-1} are independent generic points of A over k; and then the dimension of C is given by $\sum_i \dim C_{\sigma_i} - \sum_{i < j}$ $\dim (C_{\sigma_i} \cap C_{\sigma_j}) + \sum_{i < j < h} \dim (C_{\sigma_i} \cap C_{\sigma_j} \cap C_{\sigma_h}) - \cdots$. (Here conveniently we denote the dimension of a component of $C_{\sigma_{i_1}} \cap C_{\sigma_{i_2}} \cap \cdots \cap C_{\sigma_{i_k}}$ by dim $(C_{\sigma_{i_1}} \cap C_{\sigma_{i_2}} \cap \cdots \cap C_{\sigma_{i_t}})$.) As $\eta_{\sigma_i} - 1$ induces a homomorphism on the 0-component of $C_{\sigma_i} \cap C_{\sigma_i}$ with finite kernel, dim $(C_{\sigma_i} \cap C_{\sigma_i})$ is equal to the dimension of its image under $\eta_{\sigma_i} - 1$, which is contained in $(\eta_{\sigma_i} - 1)$ $(\eta_{\sigma_i}-1)A$ and so of dimension $\leq 1/2 \operatorname{rank} M_i(\eta_{\sigma_i}-1)(\eta_{\sigma_i}-1)$. While, as G is abelian, $(\eta_{\sigma_i}-1)(\eta_{\sigma_i}-1)A$ is contained in the 0-component of $C_{\sigma_i} \cap C_{\sigma_i}$. Hence we have dim $(C_{\sigma_i} \cap C_{\sigma_i}) = 1/2 \cdot \operatorname{rank} M_i(\eta_{\sigma_i} - 1)(\eta_{\sigma_i} - 1);$ and similarly dim $(C_{\sigma_{i_1}} \cap C_{\sigma_{i_2}} \cap \cdots \cap C_{\sigma_{i_l}}) = 1/2 \cdot \operatorname{rank} M_l(\eta_{\sigma_{i_1}} - 1)(\eta_{\sigma_{i_2}} - 1)$ $\cdots (\eta_{\sigma_{i_t}}-1)$. Therefore $2 \cdot \dim C$ is equal to the number of such j's that $\lambda_j \neq \chi_0$ (with the notations in the proof of Theorem 2). Now let D be an abelian subvariety of A, defined over k, such that any point a on A can be written as a=d+c with d in D and c in C and $D \cap C$ is a finite subgroup of A. If D_{σ_i} is the 0-component of the kernel of $\eta_{\sigma_i} - 1$, then, as $\eta_{\sigma_i} - 1$ has finite kernel on C_{σ_i} , $D_{\sigma_i} \cap C_{\sigma_i}$ is a finite subgroup of A and so any point a on A can also be written as $a=d_i+c_i$ with d_i in D_{σ_i} and c_j in C_{σ_i} . Hence D is contained in D_{σ_i} for any σ_i in G. Taking a prime l which does not divide the order of $D \cap C$, we have $\mathfrak{g}_l(A) = \mathfrak{g}_l(D) + \mathfrak{g}_l(C)$ (direct sum). Then as D and C are defined over k, and as $\eta_{\sigma_i} - 1$ is 0 on D and $(\eta_{\sigma_i} - 1)C$ is contained in C for any σ_i in G, the matrices $M_l(\pi_A)$, $M_l(\eta_{\sigma_i}-1)$ and $M_l(\lambda)$ are of the following forms:

$$egin{aligned} &M_l(\pi_A)\!=\!\!\begin{pmatrix}M_l(\pi_D)&0\0&M_l(\pi_C)\end{pmatrix}, &M_l(\eta_{\sigma_l}\!-\!1)\!=\!\!\begin{pmatrix}0&0\0&N_{\sigma_l}\end{pmatrix},\ &M_l(\lambda)\!=\!(\Lambda\!-\!0), \end{aligned}$$

where Λ is a non-singular matrix of degree $2 \cdot \dim D = 2 \cdot \dim B$; and clearly we have $\Lambda M_i(\pi_D) \Lambda^{-1} = M_i(\pi_B)$. Moreover, by the above argument, $2 \cdot \dim D$ is equal to the number of such j's that $\lambda_j = \chi_0$ and so all the characteristic roots of N_{σ_i} are equal to $(\lambda_j(\sigma_i) - 1)$'s with $\lambda_j \neq \chi_0$. As B and the Albanese variety of V have the same zeta-functions, we have the following additional statement to Theorem 2.

Theorem 3. If G is abelian and we write as usual (by Theorem 2) $Z(u, V) = P_1(u)P_3(u)\cdots P_{2r-1}(u)/P_0(u)P_2(u)\cdots P_{2r}(u) \text{ and }$ No. 1]

 $Z(u, A(V)) = P'_{1}(u)P'_{3}(u)\cdots P'_{2s-1}(u)/P'_{0}(u)P'_{2}(u)\cdots P'_{2s}(u),$ where A(V) is the Albanese variety of V and s is the dimension of A(V), then we have the equality $P_{1}(u) = P'_{1}(u).$

4. Let V be a normal algebraic variety of dimension r, defined over an algebraic number field k of finite degree; let A be an abelian variety such that $f: A \rightarrow V$ is a Galois covering, defined over k, with group G and of degree n. We assume, moreover, that V and A are in some projective spaces. Then, by Shimura [4] and Taniyama [5], almost all primes \mathfrak{p} in k are 'non-exceptional' for the covering A/Vin the following sense: if we denote the reduction modulo \mathfrak{p} of an object by the symbol $(\mathfrak{p}), f^{(\mathfrak{p})}: A^{(\mathfrak{p})} \rightarrow V^{(\mathfrak{p})}$ is a Galois covering, defined over $k^{(\mathfrak{p})}$, with the same group G and of the same degree n and $A^{(\mathfrak{p})}$ is an abelian variety defined over $k^{(\mathfrak{p})}$.

Then we can define the L-series $L(s, \chi, A/V)$ of the covering A/V belonging to an irreducible character χ of G, by analogy with Hasse's zeta-functions of varieties, by

 $L(s, \chi, A/V) = \prod_{\mathfrak{p}}' L((N\mathfrak{p})^{-s}, \chi, A^{(\mathfrak{p})}/V^{(\mathfrak{p})})$

where p ranges over all the non-exceptional primes for the covering A/V. Then the following theorem is an immediate consequence of Taniyama [5] and Theorem 2.

Theorem 4. If G is abelian and if $\mathcal{A}_0(A)$ contains a subfield of degree 2r, then the zeta-function $\zeta_{V}(s)$ and the L-series $L(s, \chi, A/V)$ are expressed as products of L-functions of k with 'Grössencharaktere' except for some factors of products of rational functions of q^{-s} for a finite number of $q = N\mathfrak{p}$.

References

- E. Artin: Zur Theorie der L-Reihen mit allgemeinen Gruppencharakteren, Abh. Math. Sem. Univ. Hamburg, 8, 292-306 (1930).
- S. Lang: Unramified class field theory over function fields in several variables, Ann. Math., 64, 285-325 (1956).
- [3] T. Matsusaka: On the algebraic construction of the Picard varieties II, Jap. Jour. Math., 22, 51-62 (1952).
- [4] G. Shimura: Reduction of algebraic varieties with respect to a discrete valuation of the basic field, Amer. Jour. Math., 77, 134-176 (1955).
- [5] Y. Taniyama: Jacobian varieties and number fields, Proc. Int. Symposium on Algebraic Number Theory, Tokyo-Nikko, 31-45 (1955).
- [6] A. Weil: Variétés Abéliennes et Courbes Algébriques, Paris (1948).