21. Some Properties of (n-1)-Manifolds in n-Space

By Junzo Tao
Department of Mathematics, Osaka University
(Comm. by K. Kunugi, m.J.A., Feb. 12, 1958)

In this note we shall give a brief account of some properties of a polyhedral ($n-1$)-manifold in the n-dimensional Euclidean space R^{n}, that is, of a triangulable ($n-1$)-manifold P^{n-1} rectilinearly imbedded in R^{n}. Theorems 1, 2, 3, 4 relate to the differentiable approximations of P^{n-1} in R^{n} and Theorems 5, 6 relate to the curvatura integra of P^{n-1} in R^{n}. Full details will appear in Osaka Mathematical Journal.

1. Let S be a point set in some Euclidean space R^{n}. A k-plane $H^{k}(k \geqq 1)$ in R^{n} will be called transversal to S if there exists a positive number ε such that a line through any two points of S makes an angle greater than ε with H^{k}. A k-plane $H^{k}(p)$ through a point p of S will be called transversal to S at p if $H^{k}(p)$ is transversal to some neighbourhood of p on S.

Let M^{m} be a topological manifold (with or without boundary) in some Euclidean space R^{n}. We shall say that M^{m} is in normal position in R^{n} if it is possible to define through each point p of M^{m} an ($n-m$)-plane $H^{n-m}(p)$ which varies continuously with p and is transversal to M^{m} at p. Let P^{m} be a polyhedral m-manifold in R^{n}. Then we shall say that P^{m} is in locally normal position in R^{n} if the star of any vertex on P^{m} is in normal position in R^{n}. Then we obtain the following:

Theorem 1. Any polyhedral ($n-1$)-manifold P^{n-1} in locally normal position in the n-dimensional Euclidean space R^{n} is in normal position.

Outline of the proof: Let ε be a positive number less than $\frac{1}{n}$. Let s^{j} be any j-simplex of P^{n-1} and let s^{n-1} be any ($n-1$)-simplex of P^{n-1} which belongs to the star of s^{j} on P^{n-1}. We choose barycentric coordinates ($u_{0}, u_{1}, \cdots, u_{n-1}$) on s^{n-1} so that $u_{j+1}=\cdots=u_{n-1}=0$ at s^{j}. Let $N_{s^{n-1}}\left(s^{j}\right)$ be the set of points whose barycentric coordinates (u_{0}, \cdots, u_{n-1}) satisfy the following:

$$
\varepsilon \leqq u_{0}, \cdots, \varepsilon \leqq u_{j}, 0 \leqq u_{j+1} \leqq \varepsilon, \cdots, 0 \leqq u_{n-1} \leqq \varepsilon .
$$

We shall define

$$
N\left(s^{j}\right)=\sum_{s^{n-1} \in s t\left(s^{j}\right)} N_{s^{n-1}}\left(s^{j}\right)
$$

where $S t\left(s^{j}\right)$ is the star of s^{j} on P^{n-1}.
Thus P^{n-1} is covered by these closed ($n-1$)-dimensional regions $N\left(s^{j}\right)$ which are disjoint from each other except eventually for common
faces. We shall define transversal lines on $N\left(s^{j}\right)$ step by step by induction on the dimension of the simplexes of P^{n-1}.

The initial step of induction is to define transversal lines on $N\left(s^{0}\right)$ of any vertex s^{0} of P^{n-1}. According to the hypothesis of the theorem, we may define a line $H\left(s^{0}\right)$ which passes through s^{0} and is transversal to the star of s^{0} at s^{0}. Then we define a transversal line $H(p)$ through p on $N\left(s^{0}\right)$ by the requirement

$$
H(p) \| H\left(s^{0}\right)
$$

If transversal lines $H(p)$ are defined on any $N\left(s^{k}\right)(k<j)$, the general step of induction is to extend the definition of $H(p)$ over $N\left(s^{j}\right)$ where s^{j} is any j-simplex of P^{n-1}. Let t^{j} be the set of points where all the barycentric coordinates for s^{j} exceed ε. Then $H(p)$ is already defined on $\overline{s^{j}-t^{j}}$ by induction.

First we shall extend the definition of $H(p)$ over t^{j}. Let $L\left(t^{j}\right)$ be the totality of the lines through the origin of R^{n} parallel to some ($n-1$)-simplex in the star of s^{j} on P^{n-1}. Then $L\left(t^{j}\right)$, regarding as a subset of the ($n-1$)-dimensional projective space S^{n-1} composed of all the lines through the origin of R^{n}, subdivides S^{n-1} in some closed ($n-1$)-dimensional domains $D_{i}\left(t^{j}\right)$ which are distinct from each other save eventually for common faces. It may be shown that any line $H(p)$ through a point p of t^{j} is transversal at p to $N\left(s^{j}\right)$ if and only if the line through the origin of R^{n} parallel to $H(p)$ is a point of the interior $D_{i_{0}}^{\prime}\left(t^{j}\right)$ of a fixed domain $D_{i_{0}}\left(t^{j}\right)$. Thus we obtain a mapping of the boundary of t^{j} into $D_{i_{0}}^{\prime}\left(t^{j}\right)$. By the contractibility of $D_{i_{0}}^{\prime}\left(t^{j}\right)$ we may extend this mapping from the t^{j} into $D_{i_{0}}^{\prime}\left(t^{j}\right)$. This is nothing but the constructibility of $H(p)$ on t^{j}.

Let s^{n-1} be an $(n-1)$-simplex in the star of s^{j} on P^{n-1}. Let t^{n-1} be the set of points where all barycentric coordinates for s^{n-1} exceed ε. Let $t^{\prime j}$ be the bounding simplex of t^{n-1} parallel to t^{j}. Let $t^{\prime \prime n-j-2}$ be the bounding simplex of t^{n-1} opposite to $t^{\prime j}$. Consider any point q on t^{j}. Denote by $B_{s^{n}-1}^{n-j-1}(q)$ the intersection of $N_{s^{n-1}}\left(s^{j}\right)$ with the ($n-j-1$)-dimensional plane determined by q and $t^{\prime \prime n-j-2}$, and define $B^{n-j-1}(q)$ as follows:

$$
B^{n-j-1}(q)=\sum_{s^{n-1} \in S t\left(s_{j}\right)} B_{s^{n-1}}^{n-j-1}(q)
$$

where $S t\left(s^{j}\right)$ is the star of s^{j} on P^{n-1}.
As q ranges over t^{j}, the set $B^{n-j-1}(q)$ fills out $N\left(s^{j}\right)$ in a one-toone continuous way. If now q is any point of t^{j} and p is any point of $B^{n-j-1}(q)$, then $H(p)$ will mean the line through p parallel to $H(q)$. This completes the definition of $H(p)$ on $N\left(s^{j}\right)$, and the theorem is proved.

In any arbitrary neighbourhood of a polyhedral m-manifold P^{m} in normal position in some Euclidean space, there exists, according to
S. S. Cairns [2], an analytic manifold which is homeomorphic to P^{m} and is an approximation to P^{m}. Therefore we obtain the following:

Theorem 2. Under the same condition as Theorem 1, there exists in an arbitrary neighbourhood of P^{n-1} an analytic manifold which is homeomorphic to P^{n-1} and an approximation to P^{n-1}.

Next we shall say that a topological m-manifold M^{n} in some Euclidean space R^{n} is in regular position in R^{n} if there exist unit vectors $v_{1}(p), \cdots, v_{n-m}(p)$ through each point p of M^{m} such that $v_{1}(p)$, $\cdots, v_{n-m}(p)$ vary continuously with p and that the $(n-m)$-plane spanned by these vectors in transversal to M^{m} at p.

If ($n-1$)-manifold M^{n-1} is in normal position in the n-dimensional Euclidean space R^{n}, then M^{n-1} is necessarily orientable and divides R^{n} in two domains D_{1} and D_{2}. We may orient any transversal line defined on M^{n-1} in the direction from the domain D_{1} to the domain D_{2}. Thus we obtain the following:

Theorem 3. Any (n-1)-manifold in normal position in the n dimensional Euclidean space is in regular position.

According to H . Whitney [4] any m-manifold M^{m} in regular position in the n-dimensional Euclidean space R^{n} may be imbedded in an $(n-m)$-parameter family of analytic manifolds which are homeomorphic to M^{m} and fill out a neighbourhood of M^{m} in R^{n}. Therefore we obtain the following:

Theorem 4. Under the same condition of Theorem 1, there exists a one parameter analytic family of manifolds $M_{t}(|t|<1)$ which are homeomorphic to P^{n-1} and fill out a neighbourhood of P^{n-1} in R^{n} and are analytic except for at $t=0$.
2. Let P^{n-1} be a compact polyhedral ($n-1$)-manifold in regular position in the n-dimensional Euclidean space R^{n}. We may define through each point p of P^{n-1} a unit vector $v(p)$ which varies continuously with p and transversal to P^{n-1} at p. As each point p of P^{n-1} corresponds to $v(p)$, we obtain a continuous mapping φ of P^{n-1} into a unit sphere S^{n-1}. As P^{n-1} is orientable, we may define the degree of the mapping φ which is independent of $v(p)$ defined on P^{n-1} under the conditions that $v(p)$ varies continuously with p and is transversal to P^{n-1} at p. Then we define the curvatura integra $d\left(P^{n-1}\right)$ of P^{n-1} in R^{n} as the degree of the mapping φ.

If M^{m} is an analytic manifold in some Euclidean space R^{n}, then, according to S . S. Cairns [1], M^{m} may be so triangulated into cells (σ) that the vertices of each m-cell determine a non singular m-simplex and that the totality of simplexes so determined is a polyhedral manifold P^{m} homeomorphic to M^{m} in such a way that corresponding m cells have identical vertices and that the tangent m-plane to M^{m} at any point of a cell σ^{m} of (σ) differs arbitrarily small in its direction from
the m-plane of P^{m}. We shall call P^{m} a Cairns' approximation of M^{m} in R^{n}.

Let M^{n-1} be a compact analytic manifold in R^{n} and let P^{n-1} be a Cairns' approximation of M^{n-1} in R^{n}. Then constructing at any point p on P^{n-1} the line $H(p)$ parallel to the normal line at the corresponding point of M^{n-1}, it is shown that P^{n-1} is in normal position and the curvatura integra of P^{n-1} in R^{n} is equal to the usual curvatura integra of M^{n-1} in R^{n}. Using this fact we obtain the following:

Theorem 5. If P^{n-1} is a compact polyhedral ($n-1$)-manifold in regular position in R^{n} and if M_{t}^{n-1} is the manifold defined in Theorem 4, then the usual curvatura integra of $M_{t}^{n-1}(t \neq 0)$ in R^{n} is equal to the curvatura integra of P^{n-1} in R^{n}.

Let P^{n-1} and Q^{n-1} be compact polyhedral ($n-1$)-manifolds in R^{n}. Then we may say that P^{n-1} and Q^{n-1} are congruent in R^{n}, if there exists an orientation preserving semi-linear homeomorphism Ψ of R^{n} which satisfies $\Psi(P)=Q$. Then there exists, according to V. K. A. M. Gugenheim [3], a piecewise linear homeomorphism $\Phi(p, t)=\left(\phi_{t}(p), t\right)$ of $P^{n-1} \times[0,1]$ into $R^{n-1} \times[0,1]$ such that $\phi_{t}(p)$ is a peicewise linear homeomorphism of P^{n-1} into R^{n}.

If P^{n-1} and Q^{n-1} are in regular position in R^{n}, then we may choose Φ so that $\phi_{t}\left(P^{n-1}\right)$ is in regular position in R^{n}. From this fact we obtain the following:

Theorem 6. If P^{n-1} and Q^{n-1} are compact polyhedral ($n-1$)manifolds in R^{n} and are congruent in R^{n}, then $d\left(P^{n-1}\right)=d\left(Q^{n-1}\right)$.

References

[1] S. S. Cairns: Polyhedral approximations to regular loci, Ann. Math., 37, 409415 (1936).
[2] S. S. Cairns: Homeomorphisms between topological manifolds and analytic manifolds, Ann. Math., 41, 796-808 (1940).
[3] V. K. A. M. Gugenheim: Piecewise linear isotopy and embedding of elements and spheres (I), Proc. London Math. Soc., 3, 29-53 (1953).
[4] H. Whitney: The imbedding of manifolds in families of analytic manifolds, Ann. Math., 37, 865-878 (1936).

