20. On Symmetric Skew Unions of Knots

By Yoko HASHIZUME^{*)} and Fujitsugu HOSOKAWA^{**)} (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1958)

Introduction. S. Kinoshita and H. Terasaka introduced the notion of symmetric unions and symmetric skew unions of knots and showed that the Alexander polynomial of the symmetric union of a knot is the square of that of the original knot. As regards the symmetric skew union of a knot nothing more is obtained than that its Alexander polynomial $\Delta(x)$ is independent of the winding number. In this note we shall give a more explicit form of $\Delta(x)$ and show especially that this is of the form $\phi(x) \cdot \phi(1/x)$.¹⁾

1. We shall call a polynomial f(x) symmetric (skew symmetric) if $f(x)=x^pf(1/x)$ ($f(x)=-x^pf(1/x)$) for a suitable integer p. We shall call the integer n-m the reduced degree of a polynomial $f(x)=a_ix^i$ $+\cdots+a_nx^n+\cdots+a_nx^m+\cdots+a_1x+a_0$ if $a_i=a_{i-1}=\cdots=a_{n+1}=0$, $a_n \neq 0$, $a_m \neq 0$ (n>m) and $a_{m-1}=\cdots=a_1=a_0=0$.

Lemma 1. Let f(x) and F'(x) be symmetric polynomials with even reduced degrees and let g(x) and G(x) be skew symmetric polynomials, such that

$$F(x) = xf(x) + (x-1)g(x)$$

$$G(x) = (1-x)f(x) + g(x).$$

Then, if

$$f(x) = a_n x^n + \dots + a_m x^n$$

$$g(x) = b_n x^n + \dots + b_m x^m$$

where n > m, and a_n or $b_n \neq 0$ and a_m or $b_m \neq 0$, we have either

(I)
$$\begin{cases} f(x) = a_n x^n + \dots + a_{m+1} x^{m+1} + a_m x^m \\ g(x) = b_n x^n + \dots + b_{m+1} x^{m+1} \end{cases}$$

where $a_n = a_m \neq 0$ and $b_{n-i} = -b_{(m+1)+i}$ (i=1, 2, ..., n-(m+1)), or

(II)
$$\begin{cases} f(x) = a_{n-1}x^{n-1} + \dots + a_m x^m \\ g(x) = b_n x^n + b_{n-1}x^{n-1} + \dots + b_m x^m \end{cases}$$

where $b_n = -b_m \neq 0$ and $a_{(n-1)-i} = a_{m+i}$ $(i=1, 2, \dots, n-(m+1))$. Proof. By the conditions

$$F(x) = (a_n + b_n)x^{n+1} + (a_{n-1} + b_{n-1} - b_n)x^n + \dots + (a_m + b_m - b_{m+1})x^{m+1} - b_m x^m$$

$$G(x) = -a_n x^{n+1} + (a_n + b_n - a_{n-1})x^n + \dots + (a_{m+1} + b_{m+1} - a_m)x^{m+1} + (a_m + b_m)x^m.$$

*) Department of Mathematics, Osaka University.

**) Department of Mathematics, Kobe University.

1) This ascertains the result of R. H. Fox and J. W. Milnor [2], for any symmetric (skew) unions of knots may easily be proved to belong to the category of knots considered by them.

Now the following four cases are to be considered:

Case 1. $a_n \neq 0$, $b_m \neq 0$ and $a_m = b_n = 0$. By the symmetricity of F(x) and the skew symmetricity of G(x), we have $a_n = -b_m$ and $a_n = b_m$ respectively, which contradict $a_n \neq 0$. Therefore, the case 1 can not actually occur.

Case 2. $a_m \neq 0$, $b_n \neq 0$ and $a_n = b_m = 0$. We are going to prove that this case is also impossible.

First we have $a_{n-1}=0$. For if $a_{n-1} \neq 0$, by the symmetricity of f(x) we have $a_{n-1}=a_m$, and n-m-1 must be even. And since $b_m=0$ and $a_n+b_n \neq 0$ and since the reduced degree of F(x) is assumed to be even, $a_m-b_{m+1}=0$, hence $b_{m+1}=a_m \neq 0$; thus by the skew symmetricity of g(x) $b_n=-b_{m+1}$ By the skew symmetricity of G(x) we must have, since $b_m=0$ and $a_n=0$, either $a_m=a_{n-1}-b_n \neq 0$ or $a_{n-1}-b_n=0$. But the former case contradicts $a_m=a_{n-1}$ and $b_n \neq 0$, and the latter case contradicts $a_m=b_{m+1}=0$, $b_n=-b_{m+1}$ and $a_{n-1}=a_m$. Thus we must have $a_{n-1}=0$.

Also we have $b_{m+1}=0$. For if $b_{m+1}\neq 0$, then by the skew symmetricity of g(x) and G(x) we have $b_{m+1}=-b_n=a_m$ and $b_{n-1}=-b_{m+2}$. Suppose now that $a_{n-2}\neq 0$. Since the reduced degree n-m-2 of f(x) is even, the coefficient of x^{m+2} of F(x) is equal to zero: i.e. $a_{m+1}+b_{m+1}-b_{m+2}=0$. And by the skew symmetricity of G(x), $b_{n-1}-a_{n-2}=-a_{m+1}$. But from the above properties, $b_{m+1}=a_m=a_{n-2}=b_{n-1}+a_{m+1}=b_{n-1}+b_{m+2}-b_{m+1}=-b_{m+1}\neq 0$, which is impossible. Hence we must have $a_{n-2}=0$. But from the above properties we have $a_{m+1}=-b_{m+1}=b_{m+2}$. Since $a_{m+1}+b_{m+1}-b_{m+2}=b_{m+1}\neq 0$, we have by the symmetricity of F(x), $b_n=b_{m+1}\neq 0$, which contradicts $b_n=-b_{m+1}$. Thus we have seen that $b_{m+1}=0$.

Now by the symmetricity of F(x) and the skew symmetricity of G(x), we have $b_n = a_m \neq 0$ and $b_n = -a_m$, which are impossible. Thus the case 2 can not actually occur.

Case 3. $a_n = a_m \neq 0$. By the symmetricity of f(x) we have $a_{n-i} = a_{m+i}$ $(i=1, 2, \dots, n-m)$.

We assert that $a_n = a_m + b_m \neq 0$. For if $a_m + b_m = 0$, then $a_m = -b_m \neq 0$. Then we have $a_n + b_n \neq 0$, for if $a_n + b_n = 0$, we must have $b_n = -a_n = -a_m = b_m$ which contradicts $b_n = -b_m \neq 0$. Moreover we have $a_{m+1} + b_{m+1} \neq 0$. For if $a_{m+1} + b_{m+1} = 0$, then by the skew symmetricity of G(x), $a_n = a_{m+1} + b_{m+1} - a_m = -a_m$, which contradicts $a_n = a_m \neq 0$. By the symmetricity of F(x) we have $a_n + b_n = -b_m = a_m$ and $a_{n-1} + b_{n-1} - b_n = a_m + b_m - b_{m+1}$, hence we have $b_n = 0$ and $a_{n-1} + b_{n-1} = -b_{m+1}$. Here, in view of G(x) we have the following two cases: $a_n = a_{m+1} + b_{m+1} - a_m = a_{m+1} - a_{m-1} - b_{n-1} - a_m = -b_{n-1} - a_n$, we have $2a_n = -b_{n-1}$, which contradicts $-b_{n-1} = b_m = -a_m = -a_n$. And in the latter case, since $0 = a_{m+1} + b_{m+1} - a_m = b_{n-1} - a_m = -b_{n-1}$, which contradicts $a_m = -b_m = b_{n-1}$.

 ± 0 . Hence $a_m + b_m = 0$ is impossible, as we asserted.

Thus from $a_n = a_m + b_m$ and $a_n = a_m$ we have $b_m = 0$. By the skew symmetricity of G(x) we have $a_{n-i}+b_{n-i}-a_{n-i-1}=-(a_{m+i+1}+b_{m+i+1}-a_{m+i})$ $(i=1,2,\cdots,n-m-1)$. On the other hand, we have $a_{n-i}=a_{m+i}$ Hence $b_{n-i}=-b_{m+1+i}$ $(i=0,1,\cdots,n-(m+1))$; thus the first part (I) of the conclusion of our Lemma results.

Case 4. $b_n = -b_m \neq 0$. Similar consideration as the case 3 leads to the latter half (II) of the conclusion of our Lemma.

By a simple calculation we have from Lemma 1 directly,

Lemma 2. f(x), g(x), F(x) and G(x) having the same meaning as in Lemma 1,

$$xf(x)-g(x)=x^{p}\{f(x^{-1})+g(x^{-1})\}$$

where p is a suitably chosen integer.

2. Now let κ' be a symmetric skew union of a given knot κ . We are going to consider the Alexander polynominal $\Delta_{\kappa'}(x)$ of κ' . We may suppose that the winding number is equal to $1.^{2}$ Let the projection $\kappa'_{\mathbb{Z}}$ of κ' on the ground plane E assume the form as shown in Fig. 1.

We now introduce a new knot and a link κ_1 and κ_2 as defined in Fig. 2 and Fig. 3.

It it clear that either i) κ_1 is a knot and κ_2 is a link of multiplicity 2, or ii) κ_2 is a knot and κ_1 is a link of multiplicity 2.

 $\Delta_{\kappa_i}(x)$ or $\Delta_{\kappa_i}(x, x)$ denoting the Alexander polynomials corresponding to κ_i , in the case i) we put

 $f(x)=\pm x^{p_1}\Delta_{\kappa_1}(x) \quad \text{and} \quad g(x)=\pm x^{p_2}(x-1)\Delta_{\kappa_2}(x,x)^{3)}$ and in the case ii),

 $f(x) = \pm x^{p_1}(x-1)\Delta_{\kappa_1}(x,x)$ and $g(x) = \pm x^{p_2}\Delta_{\kappa_2}(x)$, where p_1 and p_2 are suitably chosen integers.

Then we have

Theorem. If κ' is a symmetric skew union of a knot κ , then the Alexander polynomial $\Delta_{\kappa'}(x)$ is of the following form;

No. 2]

²⁾ See Theorem 3 of [3].

³⁾ See Theorem, Chap. I of [5].

$\pm x^{p} \Delta_{\kappa'}(x) = \{f(x) + g(x)\}\{f(x^{-1}) + g(x^{-1})\}$

where p is a suitably chosen integer and f(x) and g(x) have the above meaning.

Proof. Since $\Delta_{\kappa'}(x)$ is independent of the choice of orientation of κ' , we may suppose that κ' is oriented as in Fig. 1. Then the Alexander matrix M of κ' will take the following form;

where $i=1, 2, \dots, m+1$ and $j=1, 2, \dots, m$.

To calculate the Alexander polynomial, first reduce M to a square matrix by striking out two columns corresponding to regions b and c. Then adding each (m+2+i)-th row $(i=1, 2, \dots, m+1)$ to the *i*-th row and then each *j*-th column $(j=1, 2, \dots, m+1)$ to the (m+2+j)-th column respectively, we have further

$egin{pmatrix} a_1\ dots\ a_{m+1} \ \end{array}$	c_{ij}	0	0	0
-1	0	1	-1 - x	0
0	0	$ \begin{matrix} -d_1 \\ \vdots \\ -d_{m+1} \end{matrix} $	$\begin{vmatrix} -a_1 \\ \vdots \\ -a_{m+1} \end{vmatrix}$	$-c_{ij}$

Since the matrices corresponding to κ_1 and κ_2 take the forms

we have

$$f(x) = egin{bmatrix} d_1 \ dots \ d_{m+1} \end{bmatrix} \quad c_{ij} \quad \left| \begin{array}{cc} ext{and} & g(x) = egin{bmatrix} a_1 \ dots \ a_{m+1} \end{bmatrix} & c_{ij} & \left| +x egin{matrix} d_1 \ dots \ d_{m+1} \end{bmatrix} & c_{ij} \end{bmatrix}
ight|$$

Therefore we have

$$\pm x^p \Delta_{\kappa'}(x) = \{f(x) + g(x)\}\{xf(x) - g(x)\}$$

where p is a suitably chosen integer.

Our proof will be complete if we show that f(x) and g(x) satisfy the conditions of Lemma 2.

For this purpose let us introduce a new knot and a link κ_3 and κ_4 as defined in Fig. 4 and Fig. 5.

It is clear that in the case i) κ_3 is a knot and κ_4 is a link of multiplicity 2, and in the case ii) κ_3 is a link of multiplicity 2 and κ_4 is a knot.

Moreover it is clear that it suffices to prove the theorem only for the case i).

Then the matrices M_3 and M_4 of κ_3 and κ_4 take the following forms;

	b	с	e	d	a	$c_1 \cdots c_m$		b	С	d	a	$c_1 \cdots c_m$	
$M_{s} =$	-x	0	1	-1	x	0	, $M_4 =$	x	-x	1	-1	0	
	-x	1	\boldsymbol{x}	-1	0	0							
	*	*	0	$0 \begin{vmatrix} d_1 \\ \vdots \\ d_{m+1} \end{vmatrix} a_m^{d_m}$	a_1	<i>c</i> _{ij}		*	*	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C	•	
			0		a_{m+1}					d_{m+1}	a_{m+1}	c_{ij}	

We have therefore

$$\pm x^{p_3} \Delta_{\kappa_3}(x) = x f(x) + (x-1)g(x), \pm x^{p_4}(x-1) \Delta_{\kappa_4}(x,x) = (1-x)f(x) + g(x)$$

where p_3 and p_4 are suitably chosen integers.

Since $\Delta_{\kappa_1}(x)$ and $\Delta_{\kappa_3}(x)$ are symmetric and of even degree by a theorem of Seifert [4] and since $\Delta_{\kappa_2}(x, x)$ and $\Delta_{\kappa_4}(x, x)$ are skew symmetric by a theorem of Torres (Theorem I, Chap. II of [5]), f(x) and g(x) are thus seen to satisfy the conditions of Lemma 2, and the proof of the theorem is complete.

Given a link of multiplicity 2, put it in the position κ_2 as Fig. 3. Then taking the link κ_2 and the knot κ_1 corresponding to κ_2 in Fig. 2 into account, we obtain by use of Lemma 1

Corollary. If κ is a link of multiplicity 2, then the polynomial $\Delta_{\kappa}(x, x)$ of κ has an even degree.

References

- J. W. Alexander: Topological invariants of knots and links, Trans. Amer. Math. Soc., 30, 275-306 (1928).
- [2] R. H. Fox and J. W. Milnor: Singularities of 2-spheres in 4-space and equivalence of knots, Bull. Amer. Math. Soc., 63, 406 (1957).
- [3] S. Kinoshita and H. Terasaka: On unions of knots, Osaka Math. J., 9, 131-153 (1957).
- [4] H. Seifert: Über das Geschlecht von Knoten, Math. Ann., 110, 571-592 (1934).
- [5] G. Torres: On the Alexander polynomial, Ann. Math., 57, 57-89 (1953).

No. 2]