20. On Symmetric Skew Unions of Knots

By Yoko Hashizume*) and Fujitsugu Hosokawa**)
(Comm. by K. Kunugi, m.J.A., Feb. 12, 1958)

Introduction. S. Kinoshita and H. Terasaka introduced the notion of symmetric unions and symmetric skew unions of knots and showed that the Alexander polynomial of the symmetric union of a knot is the square of that of the original knot. As regards the symmetric skew union of a knot nothing more is obtained than that its Alexander polynomial $\Delta(x)$ is independent of the winding number. In this note we shall give a more explicit form of $\Delta(x)$ and show especially that this is of the form $\phi(x) \cdot \phi(1 / x) .^{11}$

1. We shall call a polynomial $f(x)$ symmetric (skew symmetric) if $f(x)=x^{p} f(1 / x)\left(f(x)=-x^{p} f(1 / x)\right)$ for a suitable integer p. We shall call the integer $n-m$ the reduced degree of a polynomial $f(x)=a_{l} x^{l}$ $+\cdots+a_{n} x^{n}+\cdots+a_{m} x^{m}+\cdots+a_{1} x+a_{0}$ if $a_{l}=a_{l-1}=\cdots=a_{n+1}=0, a_{n} \neq 0$, $a_{m} \neq 0(n>m)$ and $a_{m-1}=\cdots=a_{1}=a_{0}=0$.

Lemma 1. Let $f(x)$ and $F^{\prime}(x)$ be symmetric polynomials with even reduced degrees and let $g(x)$ and $G(x)$ be skew symmetric polynomials, such that

$$
\begin{aligned}
& F(x)=x f(x)+(x-1) g(x) \\
& G(x)=(1-x) f(x)+g(x) .
\end{aligned}
$$

Then, if

$$
\begin{aligned}
& f(x)=a_{n} x^{n}+\cdots+a_{m} x^{m} \\
& g(x)=b_{n} x^{n}+\cdots+b_{m} x^{m}
\end{aligned}
$$

where $n>m$, and a_{n} or $b_{n} \neq 0$ and a_{m} or $b_{m} \neq 0$, we have either

$$
\left\{\begin{array}{l}
f(x)=a_{n} x^{n}+\cdots+a_{m+1} x^{m+1}+a_{m} x^{m} \tag{I}\\
g(x)=b_{n} x^{n}+\cdots+b_{m+1} x^{m+1}
\end{array}\right.
$$

where $a_{n}=a_{m} \neq 0$ and $b_{n-i}=-b_{(m+1)+i}(i=1,2, \cdots, n-(m+1))$, or

$$
\left\{\begin{array}{l}
f(x)=\quad a_{n-1} x^{n-1}+\cdots+a_{m} x^{m} \tag{II}\\
g(x)=b_{n} x^{n}+b_{n-1} x^{n-1}+\cdots+b_{m} x^{m}
\end{array}\right.
$$

where $b_{n}=-b_{m} \neq 0$ and $\alpha_{(n-1)-i}=a_{m+i}(i=1,2, \cdots, n-(m+1))$.
Proof. By the conditions

$$
\begin{aligned}
F(x)= & \left(a_{n}+b_{n}\right) x^{n+1}+\left(a_{n-1}+b_{n-1}-b_{n}\right) x^{n}+\cdots+\left(a_{m}+b_{m}-b_{m+1}\right) x^{m+1}-b_{m} x^{m} \\
G(x)= & -a_{n} x^{n+1}+\left(a_{n}+b_{n}-a_{n-1}\right) x^{n}+\cdots+\left(a_{m+1}+b_{m+1}-a_{m}\right) x^{m+1} \\
& +\left(a_{m}+b_{m}\right) x^{m} .
\end{aligned}
$$

[^0]Now the following four cases are to be considered:
Case 1. $a_{n} \neq 0, b_{m} \neq 0$ and $a_{m}=b_{n}=0$. By the symmetricity of $F(x)$ and the skew symmetricity of $G(x)$, we have $a_{n}=-b_{m}$ and $a_{n}=b_{m}$ respectively, which contradict $a_{n} \neq 0$. Therefore, the case 1 can not actually occur.

Case 2. $a_{m} \neq 0, \quad b_{n} \neq 0$ and $a_{n}=b_{m}=0$. We are going to prove that this case is also impossible.

First we have $a_{n-1}=0$. For if $a_{n-1} \neq 0$, by the symmetricity of $f(x)$ we have $a_{n-1}=a_{m}$, and $n-m-1$ must be even. And since $b_{m}=0$ and $a_{n}+b_{n} \neq 0$ and since the reduced degree of $F(x)$ is assumed to be even, $a_{m}-b_{m+1}=0$, hence $b_{m+1}=a_{m} \neq 0$; thus by the skew symmetricity of $g(x) b_{n}=-b_{m+1}$ By the skew symmetricity of $G(x)$ we must have, since $b_{m}=0$ and $a_{n}=0$, either $a_{m}=a_{n-1}-b_{n} \neq 0$ or $a_{n-1}-b_{n}=0$. But the former case contradicts $a_{m}=a_{n-1}$ and $b_{n} \neq 0$, and the latter case contradicts $a_{m}-b_{m+1}=0, b_{n}=-b_{m+1}$ and $a_{n-1}=a_{m}$. Thus we must have $a_{n-1}=0$.

Also we have $b_{m+1}=0$. For if $b_{m+1} \neq 0$, then by the skew symmetricity of $g(x)$ and $G(x)$ we have $b_{m+1}=-b_{n}=a_{m}$ and $b_{n-1}=-b_{m+2}$. Suppose now that $a_{n-2} \neq 0$. Since the reduced degree $n-m-2$ of $f(x)$ is even, the coefficient of x^{m+2} of $F(x)$ is equal to zero: i.e. $a_{m+1}+b_{m+1}-b_{m+2}=0$. And by the skew symmetricity of $G(x), b_{n-1}-a_{n-2}=-a_{m+1}$. But from the above properties, $b_{m+1}=a_{m}=a_{n-2}=b_{n-1}+a_{m+1}=b_{n-1}+b_{m+2}-b_{m+1}=$ $-b_{m+1} \neq 0$, which is impossible. Hence we must have $a_{n-2}=0$. But from the above properties we have $a_{m+1}=-b_{m+1}=b_{m+2}$. Since $a_{m+1}+$ $b_{m+1}-b_{m+2}=b_{m+1} \neq 0$, we have by the symmetricity of $F(x), b_{n}=b_{m+1} \neq 0$, which contradicts $b_{n}=-b_{m+1}$. Thus we have seen that $b_{m+1}=0$.

Now by the symmetricity of $F(x)$ and the skew symmetricity of $G(x)$, we have $b_{n}=a_{m} \neq 0$ and $b_{n}=-a_{m}$, which are impossible. Thus the case 2 can not actually occur.

Case 3. $a_{n}=a_{m} \neq 0$. By the symmetricity of $f(x)$ we have a_{n-i} $=a_{m+i}(i=1,2, \cdots, n-m)$.

We assert that $a_{n}=a_{m}+b_{m} \neq 0$. For if $a_{m}+b_{m}=0$, then $a_{m}=-b_{m}$ $\neq 0$. Then we have $a_{n}+b_{n} \neq 0$, for if $a_{n}+b_{n}=0$, we must have $b_{n}=$ $-a_{n}=-a_{m}=b_{m}$ which contradicts $b_{n}=-b_{m} \neq 0$. Moreover we have $a_{m+1}+b_{m+1} \neq 0$. For if $a_{m+1}+b_{m+1}=0$, then by the skew symmetricity of $G(x), a_{n}=a_{m+1}+b_{m+1}-a_{m}=-a_{m}$, which contradicts $a_{n}=a_{m} \neq 0$. By the symmetricity of $F(x)$ we have $a_{n}+b_{n}=-b_{m}=a_{m}$ and $a_{n-1}+b_{n-1}-b_{n}=a_{m}$ $+b_{m}-b_{m+1}$, hence we have $b_{n}=0$ and $a_{n-1}+b_{n-1}=-b_{m+1}$. Here, in view of $G(x)$ we have the following two cases: $a_{n}=a_{m+1}+b_{m+1}-a_{m} \neq 0$ or $a_{m+1}+b_{m+1}-a_{m}=0$. In the former case, since $a_{n}=a_{m+1}+b_{m+1}-a_{m}=a_{m+1}$ $-a_{n-1}-b_{n-1}-a_{m}=-b_{n-1}-a_{n}$, we have $2 a_{n}=-b_{n-1}$, which contradicts $-b_{n-1}=b_{m}=-a_{m}=-a_{n} . \quad$ And in the latter case, since $0=a_{m+1}+b_{m+1}$ $-a_{m}=-b_{n-1}-a_{m}$, we have $a_{m}=-b_{n-1}$, which contradicts $a_{m}=-b_{m}=b_{n-1}$
$\neq 0$. Hence $a_{m}+b_{m}=0$ is impossible, as we asserted.
Thus from $a_{n}=a_{m}+b_{m}$ and $a_{n}=a_{m}$ we have $b_{m}=0$. By the skew symmetricity of $G(x)$ we have $a_{n-i}+b_{n-i}-a_{n-i-1}=-\left(a_{m+i+1}+b_{m+i+1}\right.$ $\left.-a_{m+i}\right)(i=1,2, \cdots, n-m-1)$. On the other hand, we have $a_{n-i}=a_{m+i}$ Hence $b_{n-i}=-b_{m+1+i}(i=0,1, \cdots, n-(m+1))$; thus the first part (I) of the conclusion of our Lemma results.

Case 4. $b_{n}=-b_{m} \neq 0$. Similar consideration as the case 3 leads to the latter half (II) of the conclusion of our Lemma.

By a simple calculation we have from Lemma 1 directly,
Lemma 2. $f(x), g(x), F(x)$ and $G(x)$ having the same meaning as in Lemma 1,

$$
x f(x)-g(x)=x^{p}\left\{f\left(x^{-1}\right)+g\left(x^{-1}\right)\right\}
$$

where p is a suitably chosen integer.
2. Now let κ^{\prime} be a symmetric skew union of a given knot κ. We are going to consider the Alexander polynominal $\Delta_{\kappa^{\prime}}(x)$ of κ^{\prime}. We may suppose that the winding number is equal to $1 .{ }^{2)}$ Let the projection κ_{B}^{\prime} of κ^{\prime} on the ground plane E assume the form as shown in Fig. 1.

Fig. 1
κ_{2} as defined in Fig. 2 and Fig. 3.

Fig. 2

Fig. 3

Fig. 4

Fig. 5

It it clear that either i) κ_{1} is a knot and κ_{2} is a link of multiplicity 2 , or ii) κ_{2} is a knot and κ_{1} is a link of multiplicity 2.
$\Delta_{\kappa_{i}}(x)$ or $\Delta_{\kappa_{i}}(x, x)$ denoting the Alexander polynomials corresponding to κ_{i}, in the case i) we put

$$
f(x)= \pm x^{p_{1}} \Delta_{\kappa_{1}}(x) \quad \text { and } \quad g(x)= \pm x^{p_{2}}(x-1) \Delta_{\kappa_{2}}(x, x)^{3)}
$$

and in the case ii),

$$
f(x)= \pm x^{p_{1}}(x-1) \Delta_{\kappa_{1}}(x, x) \quad \text { and } \quad g(x)= \pm x^{p_{2}} \Delta_{\kappa_{2}}(x),
$$

where p_{1} and p_{2} are suitably chosen integers.
Then we have
Theorem. If κ^{\prime} is a symmetric skew union of a knot κ, then the Alexander polynomial $\Delta_{\kappa^{\prime}}(x)$ is of the following form;
2) See Theorem 3 of [3].
3) See Theorem, Chap. I of [5].

$$
\pm x^{p} \Delta_{k^{\prime}}(x)=\{f(x)+g(x)\}\left\{f\left(x^{-1}\right)+g\left(x^{-1}\right)\right\}
$$

where p is a suitably chosen integer and $f(x)$ and $g(x)$ have the above meaning.

Proof. Since $\Delta_{k^{\prime}}(x)$ is independent of the choice of orientation of κ^{\prime}, we may suppose that κ^{\prime} is oriented as in Fig. 1. Then the Alexander matrix M of κ^{\prime} will take the following form;
$M=\left(\begin{array}{c|c|c|c|c|c|c|c}b & c & a & c_{1} \cdots c_{m} & d & a^{\prime} & c_{1} \cdots c_{m} \\ * & * & a_{1} & & c_{i j} & \vdots & 0 & 0 \\ & & a_{1} & & \\ a_{m+1} & & d_{m+1} & & \\ \hline x & 0 & -1 & 0 & 1 & -x & 0 \\ \hline & & & & & -d_{1} & -a_{1} & \\ * & * & 0 & 0 & \vdots & \vdots & -c_{i j}\end{array}\right)$
where $i=1,2, \cdots, m+1$ and $j=1,2, \cdots, m$.
To calculate the Alexander polynomial, first reduce M to a square matrix by striking out two columns corresponding to regions b and c. Then adding each ($m+2+i$)-th row ($i=1,2, \cdots, m+1$) to the i-th row and then each j-th column $(j=1,2, \cdots, m+1)$ to the $(m+2+j)$-th column respectively, we have further
$\left(\begin{array}{c|c|c|c|c}a_{1} & & & \\ \vdots & c_{i j} & 0 & 0 & 0 \\ a_{m+1} & & & & \\ \hline-1 & 0 & 1 & -1-x & 0 \\ \hline 0 & 0 & \left.\begin{array}{c|c}-d_{1} & -a_{1} \\ \vdots & -c_{i j}\end{array}\right), ~\left(-d_{m+1}\right. & - & \end{array}\right)$

Since the matrices corresponding to κ_{1} and κ_{2} take the forms
we have

$$
\left.f(x)=\left|\begin{array}{c}
d_{1} \\
\vdots \\
d_{m+1}
\end{array}\right| \quad c_{i j} \right\rvert\, \quad \text { and } \quad g(x)=\left|\begin{array}{c}
a_{1} \\
\vdots \\
a_{m+1}
\end{array}\right| \quad c_{i j}|+x| \begin{gathered}
d_{1} \\
\vdots \\
d_{m+1}
\end{gathered}\left|\quad c_{i j}\right| .
$$

Therefore we have

$$
\pm x^{p} \Delta_{\kappa^{\prime}}(x)=\{f(x)+g(x)\}\{x f(x)-g(x)\}
$$

where p is a suitably chosen integer.
Our proof will be complete if we show that $f(x)$ and $g(x)$ satisfy the conditions of Lemma 2.

For this purpose let us introduce a new knot and a link κ_{3} and κ_{4} as defined in Fig. 4 and Fig. 5.

It is clear that in the case i) κ_{3} is a knot and κ_{4} is a link of multiplicity 2 , and in the case ii) κ_{3} is a link of multiplicity 2 and κ_{4} is a knot.

Moreover it is clear that it suffices to prove the theorem only for the case i).

Then the matrices M_{3} and M_{4} of κ_{3} and κ_{4} take the following forms;

We have therefore

$$
\begin{aligned}
& \pm x^{p_{3}} \Delta_{\kappa_{3}}(x)=x f(x)+(x-1) g(x), \\
& \pm x^{p_{4}}(x-1) \Delta_{\kappa_{4}}(x, x)=(1-x) f(x)+g(x)
\end{aligned}
$$

where p_{3} and p_{4} are suitably chosen integers.
Since $\Delta_{\kappa_{1}}(x)$ and $\Delta_{\kappa_{3}}(x)$ are symmetric and of even degree by a theorem of Seifert [4] and since $\Delta_{\kappa_{2}}(x, x)$ and $\Delta_{\kappa_{4}}(x, x)$ are skew symmetric by a theorem of Torres (Theorem I, Chap. II of [5]), $f(x)$ and $g(x)$ are thus seen to satisfy the conditions of Lemma 2, and the proof of the theorem is complete.

Given a link of multiplicity 2, put it in the position κ_{2} as Fig. 3. Then taking the link κ_{2} and the knot κ_{1} corresponding to κ_{2} in Fig. 2 into account, we obtain by use of Lemma 1

Corollary. If κ is a link of multiplicity 2, then the polynomial $\Delta_{\kappa}(x, x)$ of κ has an even degree.

References

[1] J. W. Alexander: Topological invariants of knots and links, Trans. Amer. Math. Soc., 30, 275-306 (1928).
[2] R. H. Fox and J. W. Milnor: Singularities of 2-spheres in 4-space and equivalence of knots, Bull. Amer. Math. Soc., 63, 406 (1957).
[3] S. Kinoshita and H. Terasaka: On unions of knots, Osaka Math. J., 9, 131-153 (1957).
[4] H. Seifert: Über das Geschlecht von Knoten, Math. Ann., 110, 571-592 (1934).
G. Torres: On the Alexander polynomial, Ann. Math., 57, 57-89 (1953).

[^0]: *) Department of Mathematics, Osaka University,
 **) Department of Mathematics, Kobe University.

 1) This ascertains the result of R. H. Fox and J. W. Milnor [2], for any symmetric (skew) unions of knots may easily be proved to belong to the category of knots considered by them,
