19. On Strictly Continuous Convergence of Continuous Functions

By Takesi ISIWATA

Tokyo University of Education, Tokyo (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1958)

1. Let X be a topological space and C(X) be the set of all realvalued continuous functions defined on X. A topology of C(X) is said to be *admissible* provided that f(x) is jointly continuous with respect to the given topologies of X and C(X) respectively. We denote by " $\{f_n\} \rightarrow f$ (jointly)" that a sequence $\{f_n\}$ converges to f with respect to some admissible topology of C(X). A sequence $\{f_n\}$ is said to be continuously convergent to f (abbreviated to $\{f_n\} \rightarrow f$ (cont.)) if $\{x_n\} \rightarrow x$ implies $\{f_n(x_n)\} \rightarrow f(x)$. A sequence $\{f_n\}$ is said to be strictly continuous convergent to f (abbreviated to $\{f_n\} \rightarrow f$ (str. cont.) if $\{f(x_n)\} \rightarrow \alpha$, then $\{f_n(x_n)\} \rightarrow \alpha$ where α is a real number. Finally we shall define " $\{f_n\} \rightarrow f$ (uniformly)" when a sequence $\{f_n\}$ is uniformly convergent to f. For simplicity, by the property (S), we shall mean the following:

(S): $\{f_n\} \rightarrow f \text{ (cont.) implies } \{f_n\} \rightarrow f \text{ (str. cont.).}$

Recently, Iséki [1-3] investigated the relations between concepts of (strictly) continuous convergence, pseudo-compactness and countable compactness. In this paper, we shall prove the following:

Theorem 1. Let X be a countably compact T_1 -space. Then $\{f_n\} \rightarrow f$ (jointly) if and only if $\{f_n\} \rightarrow f$ (str. cont.) (hence by Theorem 2 in [1], $\{f_n\} \rightarrow f$ (jointly) if and only if $\{f_n\} \rightarrow f$ (uniformly)).

Theorem 2. Let Z be any topological space and X be any dense subset of Z. If X has the property (S), then Z has the property (S).

The converse of Theorem 2 is not necessarily true (cf. Example 1 below).

Corollary. Let X be a completely regular T_1 -space, and Z be the Čech compactification of X. If X has the property (S), then any subspace Y of Z, $X \subset Y$, has the property (S).

From Corollary, we can construct a pseudo-compact space which has the property (S) without being countably compact (cf. Example 2 below). Finally, we shall show the existence of a compact space which has not the property (S), by the following

Theorem 3. Let X be any discrete space containing infinitely many points, and Z be the Čech compactification of X; then we have the following statements:

i) Z has no convergent sequence.

No. 2] On Strictly Continuous Convergence of Continuous Functions

- ii) For any sequence $\{f_n\}$ and any function f (in C(Z)), we have $\{f_n\} \rightarrow f$ (cont.).
- iii) In C(Z) there exists a sequence $\{f_n\}$ such that $\{f_n\} \rightarrow f \equiv 0$ (str. cont.) does not hold.

In Theorem 3, i) is equivalent to ii) for any completely regular T_1 -space Z (cf. Remark 1 below).

2. Proof of Theorem 1. Suppose that $\{f_n\} \rightarrow f(jointly)$ and there is a sequence $\{x_n; x_n \in X, n=1, 2, \dots\}$ such that $\{f(x_n)\} \rightarrow \alpha$ (α being a real number) but not $\{f_n(x_n)\} \rightarrow \alpha$. Then there are a subsequence $\{x_n, \}$ $i=1,2,\cdots$ (=A) of $\{x_n\}$ and some $\varepsilon > 0$ such that (1)

$$|f_{n_i}(x_{n_i}) - \alpha| \ge \varepsilon.$$

Since X is countably compact, there exists an accumulation point x of A. From the definition of admissible topology, for $\delta > 0$ such that $3\delta > \varepsilon$, there are neighborhoods U of f and V of x respectively such that if $U \ni g$, $V \ni y$, then

$$|f(x)-g(y)|<\delta.$$

On the other hand, there is an index n_0 such that $n_0 < n_i$ implies $f_{n_i} \in U$, and we have $x_{n_i} \in V$ for some $n_j > n_0$. Hence

$$ig| f(x) - f_{n_j}(x_{n_j}) ig| < \delta, \ |f(x) - f(x_{n_j})| < \delta.$$

Therefore we have

(2)
$$|f_{n_j}(x_{n_j}) - \alpha| \le |f_{n_j}(x_{n_j}) - f(x)| + |f(x) - f(x_{n_j})| + |f(x_{n_j}) - \alpha|.$$

Since $\{f(x_n)\} \rightarrow \alpha$, we can assume that

Hence we have

$$|f_n(x_n)-\alpha| < 3\delta < \varepsilon.$$

 $|f(x_{n_i})-\alpha| < \delta.$

This contradicts (1). Thus we have proved that $\{f_n\} \rightarrow f$ (jointly) implies $\{f_n\} \rightarrow f$ (str. cont.).

The converse is obvious from the fact that in a pseudo-compact space, $\{f_n\} \rightarrow f$ (str. cont.) implies $\{f_n\} \rightarrow f$ (uniformly) (Theorem 2 in [1]).

3. Proof of Theorem 2. Suppose that $\{f_n\} \rightarrow f$ (cont.), $f(x_n) \rightarrow \alpha$ $(\alpha = a \text{ real number})$ hold and $\{f_n(x_n)\} \rightarrow \alpha$ does not, where $C(Z) \ni f$, f_n and $Z \ni x_n$ $(n=1, 2, \dots)$. Then there are a subsequence $\{x_{n_i}; i=1, 2, \dots\}$ and $\varepsilon > 0$ such that

 $|f_{n_i}(x_{n_i}) - \alpha| \ge \varepsilon.$ (3)

Then $\{x_{n_i}\} \cap X$ is a finite set, for if this intersection contains infinitely many points, then the inequality (3) contradicts the property (S) of X. Hence we can assume that $\{x_{n,i}\} \subset Z - X$. We take $\delta > 0$ so that $\varepsilon > 2\delta$ >0. Then there is a neighborhood U_i of x_{n_i} for each i such that if $z \in U_i$ then

$$(4) \qquad |f(x_{n_i})-f(z)| < \delta/2^i,$$

(5)
$$|f_{n_i}(x_{n_i})-f_{n_i}(z)| < \delta/2^i.$$

Now we choose a point z_i from $U_i \cap X$ for each *i*. Since $\alpha = \lim f(x_{n_i})$, we get

$$\alpha = \lim f(x_{n_i}) = \lim f(z_i)$$

by (4). Since $\{z_i\} \subset X$ and $\{f_n\} \rightarrow f$ (cont. on Z and str. cont. on X), we have

$$\lim_{i} f(z_i) = \lim_{i} f_{n_i}(z_i).$$

Therefore, from (5) we have

$$\lim_{i} f_{n_i}(z_i) = \lim_{i} f_{n_i}(x_{n_i}).$$

Consequently $\alpha = \lim_{i} f_{n_i}(x_{n_i})$. This contradicts the inequality (3), hence Z has the property (S).

4. Example 1. We shall construct an example for which the converse of Theorem 2 does not hold. Let us consider, in 2-plane, the following sets:

$$Z = \{(x, y); 0 \le x, y \le 1\}, X = Z - (1, 1).$$

Then Z is a compactum and hence Z has the property (S), because Iséki [1] proved that a sequentially compact space has the property (S). But, since X is not pseudo-compact, X has not the property (S) (see Remark 2 below).

The proof of Corollary is obvious.

From Corollary, we shall construct a pseudo-compact space which has the property (S) but is not countably compact.

Example 2. Let Y be a sequentially compact space and I = [0, 1]. Then $Y \times I$ is sequentially compact and $\beta(Y \times I) = \beta(Y) \times I$ [4]. There is a completely regular T_1 -space X which is pseudo-compact but not countably compact (therefore not normal) such that $Y \times I \equiv X \equiv \beta(Y \times I)$ [5]. Since $Y \times I$ is sequentially compact, $Y \times I$ has the property (S) and hence, by Theorem 2, X has the property (S). Next we shall give a concrete example having the properties mentioned above; let ω and Ω be the least ordinal numbers of the second and third classes respectively. Let $X_0 = [1, \Omega] \times [1, \omega] - (\Omega, \omega)$ where a topology of X_0 is given by the order topology; then X_0 has the properties mentioned above.

5. Proof of Theorem 3. i) Let $\{x_n\}$ (=A) be a convergent sequence in Z and $\{x_n\} \rightarrow x$. We can assume that $x_n \neq x$ for each n and each x_n is an isolated point in A. Therefore there are open sets U_n in Z $(n=1, 2, \cdots)$ containing x_n such that

 $\overline{U}_n \frown \overline{U}_m = heta$ (the empty set) $(n \neq m)$,

where "—" denotes the closure operation in Z. Let

No. 2] On Strictly Continuous Convergence of Continuous Functions

$$V_n = X \cap \overline{U}_n \quad (n = 1, 2, \cdots)$$

 $B = \bigcup_{n=1}^{\infty} V_{2n}, \quad C = \bigcup_{n=1}^{\infty} V_{2n+1}.$

Then B and C are disjoint closed sets in X and $\overline{B} \frown \overline{C} = \theta$ in Z since X is discrete and hence normal. On the other hand we have $\overline{B} \supset \{x_{2n}\}$ and $\overline{C} \supset \{x_{2n+1}\}$ which contradict that $\{x_n\} \rightarrow x$.

ii) Obvious.

iii) Let $\{a_n; n=1, 2, \dots\}$ $(=A) \subset X$. We shall define a function g_n on X for each n in the following way:

$$egin{aligned} g_n(a_m) &= n/m, \ g_n(z) &= 0 \quad ext{ for } z \, {\color{red} \hspace{-.1em} \epsilon} A. \end{aligned}$$

Then an extension f_n of g_n over Z is identically zero on Z-X, because for sufficiently small neighborhood of $x \in Z-X$ contains either a point of X-A or a point a_m with sufficiently large index m, hence $f_n(x)=0$. Let f be the function which is identically zero: $f\equiv 0$. Then we have $f(a_n)=0$ for all n, but $f_n(a_n)=1$ for each n. Therefore $\{f_n\} \rightarrow h\equiv 0$ (str. cont.) does not hold.

6. Remark 1. In Theorem 3, i) is equivalent to ii) for any completely regular T_1 -space. To see this, it is sufficient to prove ii) \rightarrow i). We suppose that there exists a convergent sequence $\{x_n\} \rightarrow x$ $(x_n \neq x;$ $n=1, 2, \cdots)$ and $x_n \neq x_m$ $(n \neq m)$. Let $\{U_n; n=1, 2, \cdots)$ be a family of neighborhoods of x such that

$$U_n
ightarrow x_j, \quad j=1, 2, \cdots, n, \ U_n
ightarrow x_i \quad i=n+1, \cdots$$

Let f_n be a continuous function such that

 $f_n(y)=0$ for $y \in X-U_n$ $f_n(x)=1$ and $0 \le f \le 1$ on X.

Then $f_n(x_n) = 0$, hence $\{f_n\} \rightarrow f \equiv 1$ (cont.) does not hold.

Remark 2. A sequence $\{f_n\}$ described in (p. 425 in [1], p. 356 in [2] and p. 527 in [3]) is not necessarily continuously convergent to $f\equiv 0$. Such an example is given by the space X_0 described in Example 2. Let $a_n = (\Omega, n)$, then $\{f_n\} \rightarrow f \equiv 0$ (cont.) does not hold. However, it is true that if a space X has the property (S), then X must be pseudo-compact. For, if X is not pseudo-compact, then there exists a family $\{U_n; n=1, 2, \cdots\}$ of open sets such that $\overline{U}_n \frown \overline{U}_m = \theta$ $(n \neq m)$ and $(\bigcup_{n=1}^{\infty} U_n) = \bigcup_{n=1}^{\infty} \overline{U}_n$. For each n, we define a continuous function f_n : $f_n(y)=0$ for $y \notin U_n$, $f_n(x_n)=1$ where x_n is a fixed point in U_n , $0 \leq f \leq 1$ on X.

Let $\{y_n\} \rightarrow y$ be any convergent sequence. If $y \in \overline{U}_n$ for some n, then $f_m(y_m) = 0$ for all $m > n_0$ (n_0 being a suitable integer). If $y \notin \bigcup_{n=1}^{\infty} \overline{U}_n$, then a suitable neighborhood of y is disjoint from $\overline{U_n}$ for each n, and hence we have $f_m(y_m)=0$. Therefore we can conclude that $\{f_n\} \rightarrow f \equiv 0$ (cont.) but not $\{f_n\} \rightarrow f \equiv 0$ (str. cont.) because $f_n(x_n)=1$ and f(x)=0. From this fact it follows that if X belongs to the class $[N_2]$, then X is countably compact [6].

References

- K. Iséki: Pseudo-compactness and strictly continuous convergence, Proc. Japan Acad., 33, 424-428 (1957).
- [2] K. Iséki: A theorem on continuous convergence, Proc. Japan Acad., 33, 355– 356 (1957).
- [3] K. Iséki: On generalized continuous convergence, Proc. Japan Acad., 33, 525-527 (1957).
- [4] M. Henriksen and J. R. Isbell: On the Stone-Čech compactification of a product space of two spaces (abstract 332), Bull. Amer. Math. Soc., 63 (1957).
- [5] T. Isiwata: On subspaces of Čech compactification spaces, Sci. Rep. Tokyo Kyoiku Daigaku, 5, 304–309 (1957).
- [6] T. Isiwata: Some classes of completely regular T_1 -spaces, Sci. Rep. Tokyo Kyoiku Daigaku, **5**, 287–292 (1957).