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18. Quasiideals in Semirings without Zero
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Kobe University
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O. Steinfeld [2, 3 has introduced the notion of quasiideals in
rings, and semigroups and proved some interesting theorems. In this
paper, we shall consider and prove some theorems on quasiideals in
semirings. For fundamental concepts on a semiring and its related
subjects, we shall follow the papers by S. Bourne 1, H. S. Vandiver
and M. W. Weaver 4. Unless otherwise stated, the word semiring
shall mean semiring without zero.

Let S be a semiring, and suppose that A is a subset of S which
is additively closed: if a, b eA, then a+bA. A is a quasiideal if and
only if ASSA A. Any quasiideal A is subsemiring of S, since
A ASSA A. The intersection A of quasiideals A of S is

empty or a quasiideal. For, if A--A4:, then, for each a, AS

SA ASSA A, and we have ASSA A.
Lemma 1. The intersection of a right ideal and a left ideal in

a semiring is a quasiideal.
Proof. Let R be a right ideal in S, and L a left ideal in S, then

RLRL and RL is not empty. Further, we have
(RL)SS(RL) RSSL RL,

and this shows that R.L is a quasiideal.
Lemma 2. Let be a multiplicative idempotent, and L a left

ideal, R a right ideal in a semiring S, then eL and Re are quasiideal
and

zL L sS, Re--Se R.
Proof. By Lemma 1, it is sufficient to prove the relations L--

LeS and Re=SeR. As it is trivial that sL LsS, we shall show
eL
_
LsS. Let a be an element of LsS, then we have

a- eS,
sS and aL.
Hence, since --e, we have

sa-s. sS-eS
and this shows zs=eaeeL and we have LeSsL, similary, for right
ideal R, we have Rs=SeR.

Theorem 1. The intersection of minimal right and minimal left
ideals in a semiring is a minimal quasiideal.

Proof. Let R and L be minimal right and left ideals in the semi-
ring S, and let Q be the intersection of R and L, then Q is a non-
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empty quasiideal by Lemma 1. Suppose that Q is not minimal, so
there is a quasiideal Q’ such that Q’ Q. Then we have Q’ L, and
since L is minimal, SQ’-L. Similarly, we have Q’S-R. Hence Q-
LR-SQ’Q’SQ’, which contradicts.

Theorem 2. Every minimal quasiideal Q in a semiring S is rep-
resented as follows:

Q SaaS,
where a is any element of Q, Sa is a minimal left ideal, and aS is
a minimal right ideal.

Proof. For an element a of Q, by Lemma 1, Sa aS is a quasi-
ideal in S, and we have

SaaSSQQS Q.
Since Q is a minimal quasiideal, Q-SagaS.

To prove that Sa is a minimal left ideal, suppose that L is a left
ideal such that LSa, then we have

SL L Sa.
Therefore,

SLaS Sa-,aS-Q.
By Lemma 1, SLaS is a quasiideal, and further, since Q is minimal,
SL aS Q. On the other hand, by Q Sa SL, we have SaSQSL.
This shows L--Sa, and it means that Sa is a minimal left ideal.
Similarly, aS is a minimal right ideal. Therefore the proof is com-
plete.

Let Q be a minimal quasiideal in a semiring S. By Theorem 2,
for any element a of Q, we have

SagaS- Q,
Saa.S- Q.

Therefore, for an element b, there are four elements p, q, r and S in
S such that

b pa aq,
b ra aS.

Hence, we can find two elements x, y such that
a x( 6by

and we have xay--xa-- ay e SagaS-Q. Then xaxa-xaay- xa. This
shows that xa is an idempotent in S. Let e be the idempotent, then
e eQ, and, by Theorem 2, we have a presentation of Q: SeeS=Q.
By Lemma 2, eSs is a quasiideal and eSe Q, therefore eSe-Q. The
idempotent e is the unit element of the subsemiring Q of S. We
shall show that Q is a group on the multiplication. For an element
eae of Q, we have eSe.eaeeSe=Q. By Lemma 2, eSe.zae is a quasi-
ideal in S, therefore we have eSe.eae=sSe. This shows that the equa-
tion x eae--ebe is solvable in eSe. Similarly eSe. x-ebe is solvable.
Hence Q is a group on the multiplication, i.e. a division semiring in
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the sense of S. Bourne 1.
Conversely, suppose that a quasiideal Q in a semiring S is a divi-

sion semiring, then Q is minimal. To prove it, let Q’ be a quasiideal
of S such that Q’Q, then Q’QQQ’Q’SSQ’Q’ and Q’ is a
quasiideal of Q. Let a be an element in Q’, b an element in Q, then
ax- b and ya- b are solvable in Q. Therefore b e aQQa

_
Q’QQQ’

Q’. This shows Q-Q’. Hence Q is minimal. Therefore we have
the following fundamental

Theorem 3. If there is a minimal quasiideal Q in a semiring S:
(1) There is a$ leas$ one idempoen e in Q.
(2) Q-S.
(3) Q is a division semiving.

Corollary. A quasiideal in a semiring is minimal, if and only

if i is a division semiring.
Theorem . Minimal quasiideals of a semiring are all isomorphic

together.
Proof. Let Q, and Q be two quasiideals in a semiring S, then

Q=eSe, Q-eSe by Theorem 3. Let a be an element of S, then
eae, eSe eSeeSe eSe, and eaeSe-eS. Hence, there is an
element b of S such that

The element ebeeae is idempotent of eSe, for (ebe.eae)=ebeeae
xsbeeae-ebeeae e eSe. Therefore ii eebsxeae is a map-
ping from Q1 to Q. Since Q, Q are division semirings, the mapping
is one-to-one. If x and y are elements of Q, we have (xEy)-(x)
+(y). For x and y of Q, since Xe.ey eQ and eaeebei-e, we have
exeeye eeb$1xeely$1ae- eb$elxe eaesbe$ye slash, and this shows
(xy)--(x)(y). Hence is homomorphism and Q1 and Q are iso-
morphic, the proof is complete.
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