17. On Some Function Spaces concerning Dirichlet's Problem

By Shin-ichi MATSUSHITA (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1958)

§ 1. Let E be the n-dimensional Euclidean space for a certain $n \geq 3$, and denoting the Euclidean distance in E by r(x, y) we define the Newtonian potential

$$\phi(\mu)(x) = N_n \int r^{2-n}(x, y) \, d\mu(y), \quad N_n = \frac{\Gamma(n/2)}{2(n-1)\pi^{n/2}}$$

for any positive Radon measure μ in E.

Let D be a given domain in E, whose closure \overline{D} and hence boundary ∂D are both compact. For each positive measure μ distributed in \overline{D} , consider the *inner balayage* μ_{T}^{0} of μ in ∂D and the *outer balayage* μ_{∇}^{0} of μ in $\partial \overline{D}$ (about these matters, see my another paper "On the foundation of balayage theory" which will appear in the Journal of Polytech., Osaka City Univ., 9, no. 2; cited hereafter as [1]). The notations and results used here shall be referred to that paper [1], but some of those are quoted for convenience' sake as follows.

For a measurable set X in E, we define

C(X) (or $C_u(X)$)=space of all bounded (resp. uniformly) continuous functions defined in X,

 $\mathfrak{M}^+(X)$ (or $\mathfrak{M}^+_0(X)$)=collection of all positive Radon measures distributed in X (resp. of norm less that 1). $\mathfrak{M}(X)$ =linear envelope of $\mathfrak{M}^+(X)$ on the reals.

 $\Gamma_0 = \text{set of all inner regular boundary-points of } D$ (*i.e.* $(\varepsilon_x)_{\Gamma}^0 = \varepsilon_x$ whenever $x \in \Gamma_0$).

 ∇_0 =set of all outer regular (or in other words, *stable*) boundarypoints of \overline{D} (*i.e.* $(\varepsilon_x)_{\nabla}^0 = \varepsilon_x$ whenever $x \in \nabla_0$).¹⁾

H(D)=normed linear space consisting of the restrictions in \overline{D} of all bounded potentials $f=\phi(\mu)$ for $\mu\in\mathfrak{M}(E-D)$ with respect to the norm

(1.1)
$$|| f ||_{D} = \sup_{x \in \overline{D}} |f(x)|.$$

We see that $\nabla_0 \subset \Gamma_0 \subset \partial D$ and $\partial D - \Gamma_0$ is of (inner) capacity 0.

§ 2. We now define a linear normed space $\Phi(\Gamma_0)$ linearly generated on Γ_0 from the collection of all potentials $\phi_x = \phi(\varepsilon_x)$ for $x \in E - \overline{D}$ with respect to the norm

(2.1)
$$|| \phi_x ||_{\Gamma_0} = \sup_{y \in \Gamma_0} |\phi_x(y)|.$$

¹⁾ ε_x designates a point measure of total mass +1 placed on $x \in E$.

No. 2] On Some Function Spaces concerning Dirichlet's Problem

We have seen in [1]:

Theorem A. The normed linear space $H(\Gamma_0)$ of restrictions in Γ_0 of all functions of $H(D) \frown C_u(\Gamma_0)$ with respect to the uniform norm on Γ_0 is dense in the Banach space $C_u(\Gamma_0)$ (Theorem 19 [1]).

This theorem conducts us to a new solution of Dirichlet's problem as a Banach space method (as is mentioned in [1]).

We remark now that this involves the noted theorem of M. Keldych [2] and its extension given by N. Ninomiya [3], since every function of $H(D) \frown C_u(\Gamma_0)$ has evidently a solution of the classical Dirichlet's problem.

Our main results in the present paper is:

Theorem B. Let μ be any positive measure in $\mathfrak{M}^+(\partial D)$ with bounded $\phi(\mu)$; the positive linear functional μ^{\wedge} on $\varphi(\Gamma_0)$ defined by

(2.2)
$$\mu^{\hat{}}(f) = \int_{\Gamma_0} f \, d\mu \quad for \ f \in \mathcal{Q}(\Gamma_0)$$

is uniquely prolonged up to a linear positive functional on $C_u(\Gamma_0)$ if and only if D is stable.²⁾

Here, we say that D is stable if for every $f \in C(\partial D)$ we have $\tilde{f}(x) = f^*(x)$ everywhere in D, where $\tilde{f}(x) = \int_{\partial D} f d(\varepsilon_x)_{\Gamma}^0$ and $f^*(x) = \int_{\partial D} f d(\varepsilon_x)_{\nabla}^0$; this is equivalent to that $(\varepsilon_x)_{\Gamma}^0 = (\varepsilon_x)_{\nabla}^0$ for any $x \in D$ or (owing to M. Brelot) $\partial D - \nabla_0$ is of capacity 0.

Proof of Theorem B. Suppose first that $\partial D - \nabla_0$ is of capacity 0 but yet there were another extension ξ^{\sim} of μ^{\wedge} on $C_u(\Gamma_0)$ than that defined by

(2.2)'
$$\mu^{\sim}(f) = \int_{\Gamma_0} f \, d\mu \quad \text{for } f \in C_u(\Gamma_0).^{3/2}$$

Now, $\widehat{\xi}^{\sim}$ defines a positive Radon measure $\widehat{\xi}$ on $\overline{\Gamma_0}$ and, since $\widehat{\xi}^{\sim} = \mu^{\sim}$ on $\mathscr{Q}(\Gamma_0)$, we see immediately that $\widehat{\xi}^0_{\nabla} = \mu^0_{\nabla} = \mu$ (μ can not be distributed outside of ∇_0 as $\partial D - \nabla_0$ is of capacity 0 by hypothesis). On the other hand, $\phi(\widehat{\xi})(y) = \phi(\widehat{\xi}^0_{\nabla})(y) = \phi(\mu)(y)$ for all $y \in E - \overline{D}$ and, since $\phi(\mu)$ is bounded ($\leq K < +\infty$), we have $\phi(\widehat{\xi})(y) \leq K$ for $y \in E - \overline{D}$ and $\phi(\widehat{\xi})(x)$ $\leq \lim_{\overline{y \to x}} \phi(\widehat{\xi})(y) \leq K$ for every $x \in \partial \overline{D}$ and $y \in E - \overline{D}$ such that $y \to x$; thus, $\phi(\widehat{\xi})$ is bounded on $\partial \overline{D}$ and hence on the support of $\widehat{\xi}$; this implies by maximum principle that $\phi(\widehat{\xi})$ is bounded everywhere in E and consequently $\widehat{\xi}$ must be distributed on ∇_0 . This concludes that $\widehat{\xi} = \widehat{\xi}^0_{\nabla} = \mu$, contradicting with the assumption that $\widehat{\xi}^{\sim} \neq \mu^{\sim}$.

Conversely, if D is not stable, it holds $(\varepsilon_x)_{\Gamma}^{0} \neq (\varepsilon_x)_{\nabla}^{0}$ for a certain $x \in D$, nevertheless $(\varepsilon_x)_{\Gamma}^{0^{\wedge}} = (\xi_x)_{\nabla}^{0^{\wedge}}$ on $\mathcal{Q}(\Gamma_0)$. This completes the proof of Theorem B.

^{2) 3)} Since $\phi(\mu)$ is bounded and $\partial D - \Gamma_0$ is of capacity 0, μ is distributed in Γ_0 .

S. MATSUSHITA

[Vol. 34,

Theorem B'. The functional $\varepsilon_x^{\circ}(\phi_z) = \phi_z(x)$ on $\mathcal{Q}(\Gamma_0)$ for each $x \in D$ is uniquely prolonged up to a positive linear functional on $C_u(\Gamma_0)$ if and only if D is stable.

In fact, $\varepsilon_x^{\wedge}(\phi_z) = \phi_z(x) = \int_{\partial D} \phi_z d(\varepsilon_x)_{I'}^{\theta}$ and $\phi((\varepsilon_x)_{I'}^{\theta})$ is bounded, therefore

the proof of the preceding Theorem is entirely valid in this case.

We see that Theorem B' yields a criterion of the stability of domain relating to the functional determination of the solution of Dirichlet's problem, early obtained by M. Inoue [4] in a different way, that is:

Theorem C (M. Inoue). Let ε_x^{*} be a positive linear functional related to a point $x \in D$ on $C(\partial D)$, satisfying the condition that for each ϕ_z , $z \in E - \overline{D}$,

(2.3)
$$\varepsilon_x^{\hat{}}(\phi_z) = N_n \cdot r^{2-n}(x, Z),$$

then $\varepsilon_x^{(f)} = \tilde{f}(x)$ (solution of Dirichlet's problem) for every $f \in C(\partial D)$, if and only if D is stable.

In fact, to introduce Theorem C from Theorem B' it is sufficient to remark that $C(\partial D)$ forms a linear subspace of $C_u(\Gamma_0)$ and conversely every function of $C_u(\Gamma_0)$ is well prolonged over the whole ∂D .

References

- S. Matsushita: On the foundation of balayage theory, Jour. Polytech., Osaka City Univ., 9, no. 2 (1958) (to be issued).
- [2] M. Keldych: Sur le problème de Dirichlet, C. R. (Doklady) URSS, 32, 308-309 (1941).
- [3] N. Ninomiya: Sur le caractère fonctionnel de la solution du problème de Dirichlet, Math. J. Okayama Univ., 2, 41-48 (1952).
- [4] M. Inoue: Sur la détermination fonctionnelle de la solution du problème de Dirichlet, Mem. Fac. Sci. Kyushu Univ., 5, 69-74 (1950).