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84. On Rings of Real Valued Continuous Functions

By Hisahiro TAMANO
(Comm. by K. KUNUGI, M.J.A., June 12, 1958)

E. Hewitt [3] proved several interesting and profound theorems
on rings of real valued continuous functions, and threw a new light
on the theory of completely regular spaces. We have aimed at the
characterization of topology by the properties of function rings, and
perceived that some of the algebraic techniques in the study of func-
tion rings might serve as a powerful one to solve topological problems.
In the following, we shall limit ourselves to consideration of com-
pletely regular spaces. In this case, the rings of all real valued
continuous functions are large enough to describe the topology of
base spaces. As to the notations and terminologies, we shall use
those of E. Hewitt [3].

1. In the first place, we shall give an algebraic proof of Theorem
3, which has already been proved by T. Shirota [6], using the notion
of normal covering due to Tukey. At the same time, we shall obtain
some results concerning the function ring on a subspace of completely
regular space.

Let Y be any subspace of X, and let C(X) and C(Y) be the rings
of all real valued continuous functions on X and Y respectively. Let
C'(Y) be the subring of C(Y) consisting of all the functions which
can be extended over X.

THEOREM 1. Let M be any free maximal ideal in C(Y) and let
M =M~C'(Y). Then M is a free ideal in C'(Y) (not necessarily maxi-
mal). If M is real, then M’ is maximal and real.

Proof. Suppose that M’ is not free, then there is a point peY
such that ¢(p)=0 for every oM. Since M is free, there is a func-
tion feM such that f(p)=1. Let U)={qcY; f(q)>4%} and let V(p)
be an open set of X such that V(p)~Y C U(p). Since X is completely
regular, there is a function 2¢C(X) such that h(p)=1 and h(q)=0
for every qé¢V(p). Let k' be the restriction of » on Y, then it is
clear that #'¢MM. Since M is maximal, there is a function geM such
that Z(g9)~Z(h')=¢. Obviously Z(f)C Z(h'), and it follows that
Z(f*+9°)=Z(f)~ Z(9)=¢, which is a contradiction, since fe¢M and
geM. Moreover, if M is real then for every f'eC'(Y), there is a real
number a such that f'—aeM. Since acC'(Y), it follows that f'—a e,
which implies that M’ is maximal and real.

THEOREM 2. Let Y be a closed subspace of X. Then there is a
homomorphism 5 of C(X) onto C'(Y), the kernel of which is the ideal



362 H. TaAmANO [Vol. 34,

A consisting of all the functions vanishing on Y. Let M be a maximal
ideal in C(X), then M =»(M) is also a maximal ideal in C'(Y) if and
only if M contains A. In this way, maximal ideals of C'(Y) and
those of C(X) containing % are in one to one correspondence. More-
over, M’ is free if and only if M is free, and M’ is real if and only
if M is real.

THEOREM 3. Every closed subspace of a @-space is also a Q-space.

Proof. Let Y be a closed subspace of a @-space X. Suppose that
Y is not a Q-space, then there is at least one real free maximal ideal
in C(Y). Hence, there is a real free maximal ideal in C'(Y) by Theo-
rem 1 and therefore in C(X) by Theorem 2, which contradicts the
assumption that X is a @-space.

2. This section is devoted to the characterization of topology in
terms of free ideals.

THEOREM 4. A space is locally compact if and only if the inter-
section of all free ideals is also a free ideal.

Proof. Let 2 be the intersection of all free maximal ideals in
C(X). Let g be an element of C(X) such that Z(g9) ~Z(f)=¢ for
some fe¥U, then Z(g) is compact by Theorems 1 and 2. If % is free,
then there is, for every point pe X, an element fe¥ such that f(p)
=1. Put g=4—min[4%, f], then Z(g) is a compact neighborhood of p.
Conversely, if X is locally compact, then there is a free ideal %, con-
sisting of all the functions with compact carrier. It is clear that %,
is contained in every free ideal, which completes the proof.

COROLLARY. If the intersection of all free maximal ideals is
free, then the intersection of all free ideals is also free.

A free ideal ¥ is said to be locally finite (star finite) if there is
a locally finite partition of unity > @,=1, such that ¢,e¢¥, and
{Z°(pa)} is a locally infinite (star finite) covering of X.

THEOREM 5. A space is paracompact if and only if every free
ideal is locally finite.

Proof. Let {U,} be any open covering of X. Let I be the set
of all the functions with a carrier contained in some U, and let %A
be the ideal generated by the elements of F. Then, by the assump-
tion of the theorem, we have a locally finite partition of unity > p,=1,
where ¢,¢. Since each ¢, can be represented as a finite sum of
elements of &, we can easily obtain a locally finite refinement of {U,}.
The converse follows by virtue of the well-known theorem due to
Dieudonné [1, Theorem 6] and the fact that if Z(g)DZ(f) for some
f €U then there is a function ¢'e¥ such that Z(g')=Z(g).

THEOREM 6. Let X be a completely regular space and let X, be
the discrete space of the same cardinal number with that of connected
components of X. Then X is a @-space if and only if every free
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maximal ideal is star finite (provided that X, is a Q-space).

Proof. For every hyper-real ideal IR, there is a function ke C(X)
such that P(h—a)eZ(M) for every real number a. Let g,=h,-hy
where h,=(n+1)—min [k, n+1], h/=max [k, n—2]—(n—2). Then it
is clear that g,¢% and that {Z°(g,)} is a star finite covering of X.
If X is connected, then the converse follows immediately from the
fact that a star finite covering of a connected space is countable. If
X can be decomposed into noncountable number of connected com-
ponents, we have two cases to be considered. Let It be a free maximal
ideal, and %, be the ideal consisting of all the functions vanishing
on X,, where X, is a connected component of X.

Case 1. MDA, for some a. It is clear that there is only one
such a. Let f, be the function such that f,=0 on X, and f,=1 on
U X;, then f, belongs to M, and it follows that M is hyper-real.

P Case 2. MDY, for every a. Let g, be the function such that g,=1
on X, and g,=0 O“BQ X;. By Theorem 2, it may be concluded that g,eM

for every «a, since Z(g)DZ(f ) for some f €M implies geM. Let ¢, —-:O‘EZAg.,
be any partial sum of g.’s, and let p,=1—¢, =“2Agf,, then clearly ¢, e
or ,€M, and it follows that the subfamily ZO(S)?)z{BQAXB; %gae‘m}
in Z(X )={a[éJAXa} is maximal with respect to the finite intersection

property. Therefore, (from our assumption), it may be seen that
Z(M) contains a countable subfamily with total intersection void, and
N is accordingly hyper-real.

Note. The assumption concerning the cardinal number of connected
components of X should be imposed on the above theorem, under the
present situation. In view of the theorem due to L. Nachbin [5] and
T. Shirota [7] which states that C(X) is “bornologique” with respect
to the compact-open topology if and only if X is a @-space, it is clear
that the followings are equivalent.

1) Every discrete space is a Q-space.

2) Every produect space IAIRx of real number spaces is “ bornolo-

gique”. (It should also be noted that those are equivalent to Ulam’s
problem.)

Comparing conditions of Theorems 5 and 6, the following ques-
tions arise. What is the space satisfying each one of the following
conditions?

a) Every free ideal is star finite.

b) Every free maximal ideal is locally finite.

THEOREM 7. A space is the topological sum of Lindelof spaces
if and only if every free ideal is star finite.

Proof. The proof may easily be obtained in the same way as
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in the proof of Theorem 5, in virtue of the results due to K. Morita [4].

It is well known that paracompact spaces are topologically com-
plete and so are Q-spaces. Are the spaces satisfying condition b)
topologically complete? Conversely, does every topologically complete
space satisfy condition b)?

THEOREM 8. A space is topologically complete if and only if every
free maximal ideal is locally finite.

To prove that the condition is necessary, a lemma should be
prepared.

LEMMA. Let U={V,} be a uniformity for X, where each V, may
be assumed to be open and symmetric. If the uniform space (X, 1)
is complete, then for every MeBX, corresponding to a free maximal
ideal, there is a V'ell such that ﬁ(‘m)/\X =¢, where V is the interior
of the closure of V taken in BXXxBX.

Proof. If this is not the case, then there is a free maximal ideal
M such that Va(m)/\x =C,=x ¢, for every «. Then {C,} is a Cauchy
filter. This follows easily from the observation: If V- V,C V,, then
V,- Vo, V., since X is dense in BX. Consider the filter [Fj,]=
{U\(M) ~C,}, where U,(M) is a neighborhood of M in BX, then it is
clear that (X, U) is not complete.

Proof of the theorem. Let X be complete relative to the uniformity
1, then for every free maximal ideal M, there is a V,ell as in the
above lemma. Let d, be the pseudo-metric defined by V,, in a usual
manner, such that d,(p, ¢)=1 for every (p,q)¢V,. Let X;/=X/R, be
the quotient space defined by the relation R, ={(p,q) ¢ XX X; d,(p,q)=0},
then X! is metrizable, hence is paracompact. Let p,:X—> X/ be the
projection. Now, let {U(p)} be the covering of X where U(p)=

{le ; dy(p, q)<%}. Then {U(p)} has an open locally finite refine-

ment {U,}, where U,=p;*(U{), and {U} is an open locally finite re-
finement of {p,[U(p)]}. Moreover, we have a refinement {W,} of
{U,}, with the same indices 4, such that W;C U,, and also the func-
tion f, such that fa=1 on W, and f,=0 outside of U,. In view of
the definition of V,, it follows that U, 3 M,, where U, is the closure
of U, taken in BX. Let g,=max[f5,4]—%, then it is clear that
9,€M, and that {Z°(g,)} is a locally finite covering of X. Thus the
necessity of the condition is clear. Conversely, if every free maximal
ideal M, has a locally finite partition of unity 3] ¢{’=1, then we can
define a pseudo-metric d,, corresponding to each M, as follows:

LpQ)=Zlg )= @)- Let V,,={(p.0)e Xx X; d(p.9) <2}, then

the weakest uniformity 1, for X and the family {V, .}, where »,n run
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over all possible indices, generate a uniformity U. We shall show that
the uniform space (X,lU) is complete. Let {C,} be any Cauchy filter
relative to the uniformity U. Let C be an element of {C,} such that
CxCCV,,, and take one point p from C, then all but a finite number
of ¢§”’s vanish at p. Let ¢, be the sum of all those ¢{”s, which
do not vanish at p, then it is clear that ¢,¢M,, and that ¢,(¢)>%
for every qeC. Considering a neighborhood <+, of M, in BX, where
Y¥,=max [$+—e,, 0], we have C~ Vs, =¢. This means that M, is not
a cluster point of {C,}. Consequently, it follows that no point in BX
corresponding to a free maximal ideal is a cluster point of {C,}. Thus
the proof is completed, since {C,} has a cluster point in BX.

COorROLLARY. If X is topologically complete, then every closed
subset Y, on which every element of C(X) is bounded, must be compact.
In particular, every pseudo-compact topologically complete space is
compact.

Proof. If Y is not compact, then there is a free maximal ideal
in C(Y), hence in C'(Y) by Theorem 1 and hence in C(X) by Theorem 2.
Taking the associated locally finite partition of unity > @,=1, and
choosing a countable number (infinite) of ¢,’s, such that Z°(p,) ~ Y == ¢,

[es]
we have an unbounded function o= >)a,p,, where a,’s are suitably
k=1

chosen constants. Clearly ¢ is continuous, since {Z°(¢,)} is a locally
finite covering of X.

From the proof of Theorem 8, we have the following

THEOREM 9. A uniform space (X,lU) is complete if and only if
for every free maximal ideal I, there is a Vell such that; if CxCCV
then C3 M (in BX).

Now let us consider the relationship between free ideals and
uniformity for the base space X.

THEOREM 10. Let % be any free ideal, then there is a uniformity
1 for X relative to which Z(%) is a Cauchy filter.

Proof. Let Vf,n:{(p,q)eXxX; [f(p)—f(q)[<%l, feax}. Then

U={V,,} is a desired uniformity.

THEOREM 11. X is a @-space if and only if it is complete relative
to the weakest uniform structure with respect to which every element
of C(X) is uniformly continuous.

Proof. Let {C.,} be a Cauchy filter. Let M be the ideal consist-
ing of all the functions feC(X) such that, for every ¢>0 there is a
C. on which | f|<e. Then M is a real maximal ideal in C(X). Conse-
quently, the completion of X relative to the uniform structure is vX.
This proves the proposition.

THEOREM 12. X has unique uniform structure if and only if C(X)
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has at most one free maximal ideal. Moreover the unique free
maximal ideal is real, in this case, and therefore X must be pseudo-
compact.

Proof. The necessity of the condition is almost evident in view
of Theorem 10, and the last statement follows from Theorem 11 and
the fact that, X is pseudo-compact if and only if every maximal ideal
is real. Conversely, if X has only one free maximal ideal, then it
follows immediately that out of the two normally separable closed
subsets, one, at least, must be compact. This completes the proof
(see R. Doss [2]).

COROLLARY 1. If C(X) has only one free maximal ideal M, then
M is real.

COROLLARY 2. If a normal space has unique uniform structure,
then it must be compact.

Proof. This is an immediate consequence of the fact that every
normal pseudo-compact space is compact.

In view of the above propositions, it may be stated that compact,
Lindelof, paracompact, normal, @, and topologically complete spaces
are distinguished from one another, with the mode of existence of
unbounded functions.
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