No. 6]

80. On the Regularity of Domains for Parabolic Equations

By Haruo Murakami

Kobe University

(Comm. by K. KUNUGI, M.J.A., June 12, 1958)

Let G be a domain with the boundary Γ in the m-dimensional Euclidean space R^m . Let $D=G\times(0,\infty)$ and $B=\Gamma\times[0,\infty)$. W. Fulks pointed out in [1] by constructing barriers at every boundary point of G that if D is regular for the heat equation then G is regular for Laplace's equation. In this note we shall show also by constructing barriers of the parabolic equation at every point of $G \cup B$ that the converse of the result above by W. Fulks is true.

Consider the equation

$$\Box u = f(x, t, u)^{10}$$

where f(x, t, u) is continuous on $D \times (0, \infty)$ and quasi-bounded with respect to u.

As in [2, p. 623], we say that w(x,t) is a barrier of (E) at a boundary point $(x^0, t^0) \in G \subseteq B$ with respect to a bounded function $\beta(x, t)$ defined on $G \subseteq B$ if w(x, t) satisfies:

- (i) w(x, t) is continuous on \overline{D} ,
- (ii) w(x,t)>0 $(x,t)\in \overline{D}, (x,t)\neq (x^0,t^0),$
- (iii) $w(x,t) \rightarrow 0$ $(x,t) \rightarrow (x^0,t^0)$, $(x,t) \in \overline{D}$,
- (iv) $\bigcirc w(x,t) \leq -M$, where

$$M = \sup \{ | f(x, t, \overline{\beta}(x^0, t^0)) |, | f(x, t, \beta(x^0, t^0)) |; (x, t) \in \overline{D} \}.$$

It is known²⁾ that if every point of $G \smile B$ has barriers then D is regular for (E), i.e. the first boundary value problem of (E) is always solvable for any continuous data on $G \smile B$.

Now we shall construct the barrier w(x,t) satisfying the conditions (i), (ii), (iii) and (iv) under the assumption that G is regular for Laplace's equation.

In case that $(x^0,t^0)\in G$, it is easy to see that the function $w(x,t)=\sum\limits_{i=1}^m(x_i-x_i^0)^2+(2m+M)(t-t^0)$ is a barrier at (x^0,t^0) . In case that $(x^0,t^0)\in B$ with $t^0>0$, let $\varphi(x,t)=\sum\limits_{i=1}^m(x_i-x_i^0)^2+(t-t^0)^2$. Then we have $\varphi(x,t)\geq 0$ and

$$\Box \varphi(x,t) = \sum_{i=1}^{m} \frac{\partial^{2} \varphi(x,t)}{\partial x_{i}^{2}} - \frac{\partial \varphi(x,t)}{\partial t} \\
= 2(m - (t - t^{0})).$$

^{1) □} and △ below are respectively the generalized heat and Laplacian operators. For the definitions, see [2, p. 627], where □ is denoted by □. See also [3, p. 349].

2) [2, pp. 624-626].

For a boundary vanishing solution $\psi(x)$ of $\triangle \psi = -2(m+t^0) - M$ on $G \subseteq \Gamma$, the function $w(x,t) = \psi(x) + \varphi(x,t)$ has the following properties:

- (i) w(x,t) is continuous on \overline{D} ,
- (ii) w(x, t) > 0 $(x, t) \in \overline{D}$, $(x, t) \neq (x^0, t^0)$,
- (iii) $w(x, t) \rightarrow 0$ $(x, t) \rightarrow (x^0, t^0), (x, t) \in \overline{D},$
- (iv) $\bigcirc w(x,t) = \bigcirc \{\psi(x) + \varphi(x,t)\}$ $= \triangle \psi(x) + \bigcirc \varphi(x,t)$ $= -2(m+t^0) - M + 2\{m - (t-t^0)\}$ = -M - 2t $\leq -M$.

Thus, w(x, t) is a barrier of (E) at (x^0, t^0) . This completes the proof.

References

- [1] W. Fulks: A note on the steady state solution of the heat equation, Proc. Amer. Math. Soc., 7 (1956).
- [2] H. Murakami: On non-linear partial differential equations of parabolic types. I-III, Proc. Japan Acad., 33, 530-535, 616-627 (1957).
- [3] H. Murakami: Relations between solutions of parabolic and elliptic differential equations, Proc. Japan Acad., 34, 349-352 (1958).