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Let G be a domain with the boundary F in the m-dimensional
Euclidean space R. Let D-G (0, oo) and B-F [0, oo). W. Fulks
pointed out in [1 by constructing barriers at every boundary point
of G that if D is regular for the heat equation then G is regular for
Laplace’s equation. In this note we shall show also by constructing
barriers of the parabolic equation at every point of GB that the
converse of the result above by W. Fulks is true.

Consider the equation
( E u f(x, t, u)"
where f(x,t, u)is continuous on D(0, oo) and quasi-bounded with
respect to u.

As in [2, p. 623, we say that w(x,t) is a barrier of(E) at a
boundary point (x, t) GB with respect to a bounded function (x, t)
defined on GB if w(x, t) satisfies:

(i) w(x,t) is continuous on D,
(ii) w(x, t) > 0 (x, t) e D, (x, t) - (x, t),
(iii) w(x, t)-+O (x, t)->(x, t), (x, t) e D,
(iv) w w(x, t) < M, where

M--sup {I f(x, t, (x, t))I, If(x, t, (x, t))!; (x, t) D ].
It is known that if every point of GB has barriers then D

is regular for (E), i.e. the first boundary value problem of (E) is
always solvable for any continuous data on GB.

Now we shall construct the barrier w(x, t) satisfying the condi-
tions (i), (ii), (iii) and (iv) under the assumption that G is regular
for Laplace’s equation.

In case that (x, t)e G, it is easy to see that the function w(x, t)
=(x,-x,)=+(2m+M)(t-t) is a barrier at (x,t). In case that

i=l

(x,t)eB with t>0, let 9(x,t)-(x,--x)+(t--t). Then we have

9(x, t)___>0 and

t)- t) t)
; 3x 3t

=2(m--(t--t)).
1) w and below are respectively the generalized heat and Laplacian operators.

For the definitions, see [2, p. 627], where w is denoted by []. See also [3, p. 349].
2) [2, pp. 624-626].
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For a boundary vanishing solution (x) of /- --2(m+t)-M on
GF, the function w(x, t)-(x)+ cp(x, t) has the following properties:

(i) w(x,t) is continuous on D,
(ii) w(x, t) > 0 (x, t) D, (x, t) (x, t),
(iii) w(x, t)-->O (x, t)->(x, t), (x, t) D,
(iv) w(x, t)- {(x)+o(x, t)}

(x)+ o(x, t)
--2(m+t) M+2[m--(t--t)}
--M--2t

--M.
Thus, w(x, t) is a barrier of (E) at (x, t).

proof.
This completes the
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