75. Hukuhara's Problem for Hyperbolic Equations with Two Independent Variables. I. Semi-linear Case

By Setuzô Yosida
Department of Mathematics, University of Tokyo, Japan
(Comm. by Z. Suetuna, m.J.A., June 12, 1958)

Introduction. In the Cauchy problem for partial differential equations involving N unknown functions $u_{i}(i=1, \cdots, N)$ of two independent variables, the initial values of the functions u_{i} are prescribed on a curve. Generalizing the way of giving the Cauchy conditions, we can set up another problem where N curves C_{i} are given and on each C_{i} the value of u_{i} is prescribed. This will be called Hukuhara's problem, or shortly, Problem H, since M. Hukuhara has originally studied an analogous problem for the system of ordinary differential equations.

Generally speaking, the solutions of the Cauchy problems for hyperbolic systems are stable, that is to say, the slight change of the initial values entails but a slight change of the solutions. In physical problems, the initial values of unknown quantities are found experimentally and can not be determined with absolute precision, so that the stability property of the problem has a special importance in this case. However, the errors of the measurement may be committed also concerning the situation of the initial curves, i.e. the values of the different unknown quantities can not be measured at the exactly same time and place. This consideration leads us to the concept of the Hukuhara's problem, and the influence of the change of the situation of the curves C_{i} upon the solutions should be investigated to secure the stability property of the problem.

We shall show in this paper, the correctly posedness of the Hukuhara's problem for semi-linear hyperbolic systems with two independent variables, which are assumed to be of diagonal form, since every semilinear system can be transformed to this normal form by the wellknown techniques. Same results for the quasi-linear systems will be stated in the following report entitled Part II. Our proof is given by means of the elementary method of successive approximation, since the stability of the solutions concerning the situation of the curves C_{i}, one of the characteristic properties of our problem, can be obtained by it very easily.

Recently, analogous problems have been treated by two Polish mathematicians, Z. Szmydt [2-5] and A. Pliś [1]. The former proved the existence and the uniqueness of solutions of a problem intimately
connected with ours for the higher order hyperbolic systems with two independent variables, of which the characteristics were all straight lines parallel to one of the two axes. A. Pliś proved analogous results for a first order system which involves an arbitrary number of independent variables $\left(x, y_{1}, \cdots, y_{m}\right)$. In his paper, the values of unknowns were prescribed on the parallel hyperplanes: $x=a_{i}(i=1, \cdots, N)$. Both authors have not discussed the stability of the solutions.

1. Problem H. The norm $\|g\|_{D}$ of a vector $g=\left(g_{1}, \cdots, g_{N}\right)$, whose components are functions defined on some domain D, will be defined as $\|g\|_{D}=\sup _{i}\left(\sup _{D}\left|g_{i}\right|\right)$.

Consider a real semi-linear hyperbolic system of the form

$$
\begin{equation*}
\partial u_{i} / \partial t-\lambda_{i}(t, x) \partial u_{i} / \partial x=f_{i}(t, x, u), \quad i=1,2, \cdots, N . \tag{1}
\end{equation*}
$$

We make the following assumptions: $1^{\circ} \lambda_{i}$ are defined on a strip $G=\{0 \leq t \leq B, B>0\}$ in (t, x)-space and belong to class $C^{1},\|\lambda\|_{G},\|\partial \lambda / \partial x\|_{G}$ being finite, $2^{\circ} f_{i}$ are defined on a strip $\bar{G}=\{(t, x) \in G,\|u\| \leq \rho\}$ in (t, x, u)-space and belong to class C^{1}, where $u=\left(u_{1}, \cdots, u_{N}\right)$ and $\|u\|=$ $\sup _{i}\left|u_{i}\right| ;\|f\|_{\bar{\alpha}},\|\partial f / \partial x\|_{\bar{\alpha}},\left\|\partial f / \partial u_{i}\right\|_{\bar{G}}$ being finite. Consequently f is Lipschitzian with respect to u, i.e. $\left|f_{i}(u)-f_{i}(v)\right| \leq L \cdot\|u-v\|$ with a constant L. Let θ, M_{1}, M_{2} be constants such as $\pi / 2 \geq \theta>0, \rho>M_{1}>0$, $M_{2}>0$. We call the set of the constants $\left\{B, \rho, \theta, M_{1}, M_{2},\|\lambda\|_{G},\|\partial \lambda / \partial x\|_{G}\right.$, $\left.\|f\|_{\bar{G}},\|\partial f / \partial x\|_{\bar{a}},\left\|\partial f / \partial u_{i}\right\|_{\bar{G}}, i=1,2, \cdots, N\right\}$ the size of Problem H.

Under these assumptions, there exists a positive constant B_{0} determined by several inequalities which consist only of the quantities derived from the size of Problem H, and we can solve the problem on the strip $G_{0}=\left\{0 \leq t \leq B_{0}\right\}$. More precisely; let N smooth curves C_{i} be situated on G_{0} in such a way that the i-th curve C_{i} intersects every one of the whole family of the i-th characteristics of (1) at one and only one point and at an angle not less than θ. For every i let ϕ_{i} be a smooth function defined on the i-th curve C_{i} which satisfies the inequalities $\left|\phi_{i}\right| \leq M_{1},\left|\partial \phi_{i} / \partial s_{i}\right| \leq M_{2}$, where $\partial / \partial s_{i}$ means the derivation along the curve C_{i}. Then we can find a solution of (1) which is defined on G_{0}, equal to ϕ_{i} on C_{i}, unique and depends continuously on curves C_{i} and functions ϕ_{i}. In other words, the problem is correctly posed in the sense of Hadamard.
2. Integration along the characteristics. The i-th characteristic l_{i} of (1), passing through a point (t_{0}, x_{0}) of G is expressed as $x=\psi_{i}(t)$ by the solution ψ_{i} of

$$
\begin{equation*}
d \psi_{i}(t) / d t=-\lambda_{i}\left(t, \psi_{i}(t)\right), \quad \psi_{i}\left(t_{0}\right)=x_{0} . \tag{2}
\end{equation*}
$$

By the theory of ordinary differential equations, $\left\{\left\|\partial \psi / \partial x_{0}\right\|_{0 \leq t \leq B}\right\}_{\left(t_{0}, x_{0}\right) \in G}$ has a l.u.b., which can be determined by the size of Problem H. For the moment we impose on B_{0} merely the condition such as $B_{0} \leq B$
and proceed by formal calculations. Further conditions for B_{0}, by which we can verify the results obtained, will be stated later. Let $\left(t_{0}, x_{0}\right)$ be a point of G_{0} and l_{i} be the i-th characteristic passing through $\left(t_{0}, x_{0}\right)$. Take N curves C_{i} as described in $\S 1$ and let $\left(t_{i}, x_{i}\right)$ be the intersecting points of l_{i} and C_{i} for $i=1,2, \cdots, N . \quad t_{i}$ and x_{i} become uniquely determined functions of (t_{0}, x_{0}) and belong to class C^{1}. As C_{i} and l_{i} intersect at an angle not less than θ, the boundedness of $\left\|\partial \psi_{i} / \partial x_{0}\right\|_{0 \leq t \leq B}$ assures that $\left\|\left(\partial t_{i} / \partial x_{0}\right) \quad i=1,2, \cdots, N\right\|_{G_{0}}$ and $\|\left(\partial x_{i} / \partial x_{0}\right)$ $i=1,2, \cdots, N \|_{G_{0}}$ have l.u.b.'s determined by the size.

Integrating the i-th equation of (1) along the i-th characteristic l_{i} under the condition of $u_{i}\left(t_{i}, x_{i}\right)=\phi_{i}\left(t_{i}, x_{i}\right)$, we obtain

$$
\begin{equation*}
u_{i}\left(t_{0}, x_{0}\right)=\phi_{i}\left(t_{i}, x_{i}\right)+\int_{t_{i}}^{t_{0}} f_{i}\left(t, \psi_{i}(t), u\left(t, \psi_{i}(t)\right)\right) d t . \tag{3}
\end{equation*}
$$

Conversely, if a solution of (3) belongs to class C^{1}, it must be the solution of Problem H. We shall find the solution of (3) by the successive approximation and prove its differentiability later.

We put $u_{i}^{(0)}\left(t_{0}, x_{0}\right)=\phi_{i}\left(t_{i}, x_{i}\right), i=1,2, \cdots, N$ and define $\left\{u^{(n)}\right\}$ successively by the formulas

$$
\begin{equation*}
u_{i}^{(n+1)}\left(t_{0}, x_{0}\right)=\phi_{i}\left(t_{i}, x_{i}\right)+\int_{t_{i}}^{t_{0}} f_{i}\left(t, \psi_{i}(t), u^{(n)}\left(t, \psi_{i}(t)\right)\right) d t \tag{4}
\end{equation*}
$$

The inequalities $\left\|u^{(n)}\right\|_{G_{0}} \leq M_{1}+M \cdot B_{0}$ and $\left\|u^{(n+1)}-u^{(n)}\right\|_{G_{0}} \leq M \cdot L^{n-1} \cdot B_{0}^{n}$ for every n can be proved easily, so that, if we impose on B_{0} the conditions

$$
\begin{equation*}
L \cdot B_{0}<1 \quad \text { and } \quad M_{1}+M \cdot B_{0} \leq \rho, \tag{5}
\end{equation*}
$$

all formal calculations are juistified. Namely, we have $\left\|u^{(n)}\right\|_{G_{0}} \leq \rho$ for every n and $u^{(n)}$ converges as $n \rightarrow \infty$ uniformly on G_{0} to a limit function u, which is continuous and solves the integral equations (3).
3. Uniqueness and stability of the solution. The solution of (3), which is continuous and $\|u\|_{\theta_{0}} \leq \rho$, is unique, hence, the solution of Problem H enjoying the same properties is unique.

Indeed, if two such solutions u, v exist, we should have

$$
u_{i}\left(t_{0}, x_{0}\right)-v_{i}\left(t_{0}, x_{0}\right)=\int_{t_{i}}^{t_{0}}\left[f_{i}(u)-f_{i}(v)\right] d t .
$$

Hence $\|u-v\|_{a_{0}} \leq L \cdot B_{0} \cdot\|u-v\|_{G_{0}}$, so that $\|u-v\|_{G_{0}}$ must be zero, since we have imposed on B_{0} the conditions (5).

We divide the proof of the stability of the solution into two parts.
1° Continuous dependence on ϕ_{i}. Take the solutions u, \bar{u} of (3) corresponding to ϕ_{i} and $\bar{\phi}_{i}$ respectively, where ϕ_{i} and $\bar{\phi}_{i}$ are assumed to satisfy the condition such as $\left|\phi_{i}-\bar{\phi}_{i}\right| \leq \varepsilon$ on C_{i} for a constant $\varepsilon>0$, $i=1,2, \cdots, N$. Then the 0 -th approximations of u, \bar{u} satisfy the inequality $\left\|u^{(0)}-\bar{u}^{(0)}\right\|_{\sigma_{0}} \leq \varepsilon$, and we can prove by induction the formula
$\left\|u^{(n)}-\bar{u}^{(n)}\right\|_{\sigma_{0}} \leq \varepsilon \cdot \sum_{k=0}^{n}\left(L \cdot B_{0}\right)^{k}$, so that the uniform convergence of the approximating sequences and the inequalities (5) yield $\|u-\bar{u}\|_{a_{0}}$ $\leq \varepsilon /\left(1-L \cdot B_{0}\right)$. Hence \bar{u} converges uniformly to u on G_{0} as $\varepsilon \rightarrow 0$.
2° Continuous dependence on C_{i}. Let two sets of curves C_{i} and \bar{C}_{i} be situated on G_{0} as indicated in $\S 1$. We define the one-to-one correspondence between the points of C_{i} and \bar{C}_{i} such that the points of C_{i} and \bar{C}_{i}, situated on one and the same i-th characteristic, should be put into correspondence. We assume that for every i the curves C_{i} and \bar{C}_{i} should be placed near to each other, i.e. the inequalities $\left|t_{i}-\bar{t}_{i}\right|$ $\leq \varepsilon, i=1,2, \cdots, N$ should hold with some constant $\varepsilon>0$, where t_{i} and \bar{t}_{i} mean the t-coordinates of the points $\left(t_{i}, x_{i}\right)$ and $\left(\bar{t}_{i}, \bar{x}_{i}\right)$ which are put into correspondence as defined above. Let ϕ_{i} be given on C_{i}, then we define $\bar{\phi}_{i}$ on \bar{C}_{i} by the relation $\bar{\phi}_{i}\left(\bar{t}_{i}, \bar{x}_{i}\right)=\phi_{i}\left(t_{i}, x_{i}\right)$. For the data C_{i}, ϕ_{i} and $\bar{C}_{i}, \bar{\phi}_{i}$ respectively, we have two solutions u, \bar{u}. As for their 1st approximations the inequality $\left\|u^{(1)}-\bar{u}^{(1)}\left|\|_{a_{0}} \leq \max _{i}\right| \int_{t_{i}}^{\bar{t}_{i}} f_{i} d t \mid \leq \varepsilon \cdot M\right.$ holds, and we can verify by induction, $\left\|u^{(n)}-\bar{u}^{(n)}\right\|_{\epsilon_{0}} \leq \varepsilon \cdot M \cdot \sum_{k=0}^{n-1}\left(B_{0} \cdot L\right)^{k}$ for every n, hence as the limit of $n \rightarrow \infty$ we have $\|u-\bar{u}\|_{\sigma_{0}}$ $\leq \varepsilon \cdot M /\left(1-B_{0} \cdot L\right)$, which asserts us the uniform convergence of \bar{u} to u on G_{0} as $\varepsilon \rightarrow 0$.

From 1° and 2° we know that the solution of (3), hence that of Problem H, depends on ϕ_{i} and $C_{i}, i=1,2, \cdots, N$ continuously, if the condition $\|u\|_{\sigma_{0}} \leq \rho$ is imposed on it.
4. Differentiability of the solution. As $u=\left(u_{1}, \cdots, u_{N}\right)$ is the solution of (3), u_{i} is continuously differentiable along the i-th characteristic, hence, to prove the smoothness of u, it is sufficient to show that $\partial u_{i} / \partial x$ exists and is continuous on G_{0} for every i.
$1^{\circ}\left\|\partial u^{(n)} / \partial x_{0}\right\|_{\sigma_{0}}$ is uniformly bounded for every n.
Differentiation of (4) with respect to x_{0} yields

$$
\begin{equation*}
\frac{\partial u_{i}^{(n+1)}}{\partial x_{0}}=\frac{\partial \phi_{i}\left(t_{i}, x_{i}\right)}{\partial x_{0}}+f_{i} \cdot \frac{\partial t_{i}}{\partial x_{0}}+\int_{t_{i}}^{t_{t}}\left[\frac{\partial f_{i}}{\partial x}+\sum_{j=1}^{N} \frac{\partial f_{i}}{\partial u_{j}} \frac{\partial u_{j}^{(n)}}{\partial x}\right] \frac{\partial \psi_{i}}{\partial x_{0}} d t . \tag{6}
\end{equation*}
$$

For a fixed constant K such as $K>\left\|\left(\partial \phi_{i}\left(t_{i}, x_{i}\right) / \partial x_{0}\right)_{i=1,2, \ldots, N}\right\|_{G_{0}}$ $+\|f\|_{\sigma_{0}} \cdot\left\|\left(\partial t_{i} / \partial x_{0}\right)_{i=1,2, \ldots, N}\right\|_{a_{0}}$ we have evidently $\left\|\partial u^{(0)} / \partial x_{0}\right\|_{a_{0}} \leq K$, and by induction the inequality $\left\|\partial u^{(n)} \mid \partial x_{0}\right\|_{\epsilon_{0}} \leq K$ can be proved for every n, provided that the condition such as

$$
\begin{align*}
& \left\|\left(\partial \phi_{i} / \partial x_{0}\right)_{i=1,2, \ldots, N}\right\|_{\sigma_{0}}+\|f\|_{a_{0}} \cdot\left\|\left(\partial t_{i} / \partial x_{0}\right)_{i=1,2, \ldots, N}^{N}\right\|_{\sigma_{0}} \\
& +B_{0}\left\|\partial \psi / \partial x_{0}\right\|_{a_{0}} \cdot\left[\left\|\partial f x_{0}\right\|_{\sigma_{0}}+K \cdot \sum_{j=1}^{N}\left\|\partial f / \partial u_{j}\right\|_{a_{0}}\right] \leq K \tag{7}
\end{align*}
$$

is satisfied by B_{0}.
$2^{\circ} \partial u^{(n)} / \partial x_{0}$ converges uniformly on G_{0}.

From (6) we have

$$
\begin{gather*}
\frac{\partial u_{i}^{(m+1)}}{\partial x_{0}}-\frac{\partial u_{i}^{(n+1)}}{\partial x_{0}}=\frac{\partial t_{i}}{\partial x_{0}}\left[f_{i}\left(u^{(m)}\right)-f_{i}\left(u^{(n)}\right)\right]+\int_{t_{i}}^{t_{0}}\left[\frac{\partial f_{i}\left(u^{(m)}\right)}{\partial x}\right. \\
\left.-\frac{\partial f_{i}\left(u^{(n)}\right)}{\partial x}\right] \cdot \frac{\partial \psi_{i}}{\partial x_{0}} d t+\int_{t_{i}}^{t_{0}} \sum_{j=1}^{N}\left[\frac{\partial f_{i}\left(u^{(m)}\right)}{\partial u_{j}}-\frac{\partial f_{i}\left(u^{(n)}\right)}{\partial u_{j}}\right] \cdot \frac{\partial u_{j}^{(m)}}{\partial x} \cdot \frac{\partial \psi_{i}}{\partial x_{0}} d t \tag{8}\\
\\
+\int_{t_{i}}^{t_{0}} \sum_{j=1}^{N} \frac{\partial f_{i}\left(u^{(n)}\right)}{\partial u_{j}}\left[\frac{\partial u_{j}^{(m)}}{\partial x}-\frac{\partial u_{j}^{(n)}}{\partial x}\right] \cdot \frac{\partial \psi_{i}}{\partial x_{0}} d t .
\end{gather*}
$$

The 1st, 2 nd and 3 rd terms of R. S. converge uniformly to 0 on G_{0} as $m, n \rightarrow \infty$, so that if we define d such as $d=\lim \sup _{m, n \rightarrow \infty}$ $\left\{\left\|\partial u^{(m)} / \partial x_{0}-\partial u^{(n)} / \partial x_{0}\right\|_{G_{0}}\right\}$, we obtain the inequality

$$
\begin{equation*}
d \leq B_{0} \cdot\left\|\partial \psi / \partial x_{0}\right\|_{a_{0}} \cdot \sum_{j=1}^{N}\left\|\partial f / \partial u_{j}\right\|_{a_{0}} \cdot d \tag{9}
\end{equation*}
$$

If we impose on B_{0} the condition such that the coefficient of d in the R. S. of (9) should be less than one, then d must be equal to zero, so that $\partial u^{(n)} / \partial x_{0}$ converges uniformly on G_{0}. Therefore the limit function u of $u^{(n)}$ is continuously differentiable in x-direction, hence it belongs to class C^{1} and gives the solution of Problem H.
5. Conditions for the finiteness of domain G. Hitherto we have discussed the problem on a strip $G=\{0 \leq t \leq B\}$ which was assumed to be infinite in x-direction. In this section we shall give the several cases in which Problem H can be settled on a finite domain.

Divide G into two parts by a curve l_{0} which is defined such as $x=\psi_{0}(t), 0 \leq t \leq B$, and let $G^{\prime}=\left\{x \geq \psi_{0}(t), 0 \leq t \leq B\right\}$ be its right half part. If every point of G^{\prime} can be connected to C_{i} by the i-th characteristic l_{i} without leaving G^{\prime} for every i, we say that Problem H satisfies the left finiteness condition along l_{0}. Then $\S \S 1-4$ are still valid if G is replaced with G^{\prime}. The right finiteness condition is defined similarly.
1° If N characteristics unite and make up a curve l_{0} which divides G into two parts, then the left and right finiteness conditions are satisfied along this l_{0}.
2° If all N curves C_{i} pass through a fixed point $\left(t_{0}, x_{0}\right)$ of G and if there exists a piecewise smooth curve l_{0} such as $x=\psi_{0}(t), 0 \leq t \leq B$, which satisfies the following conditions: $x_{0}=\psi_{0}\left(t_{0}\right), d \psi_{0}(t) / d t \leq$ $-\lambda_{i}\left(t, \psi_{0}(t)\right)$, for $t>t_{0}$, and $d \psi_{0}(t) / d t \geq-\lambda_{i}\left(t, \psi_{0}(t)\right)$, for $t<t_{0}, i=1,2, \cdots$, N, then the right finiteness condition is satisfied along l_{0}. Similar argument is valid for the left finiteness condition.

Cauchy problems, regarded as the special case of our Problem H, satisfy the above condition 2° in a trivial way, and any straight line whose slope is $\pm M, M$ is a constant such as $M \geq\|\lambda\|_{G}$, can play the part of the curve l_{0}.

References

[1] A. Pliś: Generalisation of the Cauchy problem to a system of partial differential equations, Bull. Acad. Polon. Sci., 4, 741-744 (1956).
[2] Z. Szmydt: Sur un nouveau type de problèmes pour un système d'équations différentielles hyperboliques du second ordre à deux variables indépendantes, ibid., 4, 67-72 (1956).
[3] --: Sur une généralisation des problèmes classiques concernant un système d'équations différentielles hyperboliques du second ordre à deux variables indépendantes, ibid., 4, 579-584 (1956).
[4] -: Sur le problème de Goursat concernant les équations différentielles hyperboliques du second ordre, ibid., 5, 571-575 (1957).
[5] -: Sur un problème concernant un système d'équations différentielles hyperboliques d'ordre arbitraire à deux variables, ibid., 5, 577-582 (1957).

