$x * a)$ for a suitable $x \in \mathfrak{H}$ is a left (resp. right) L-*-order of \mathfrak{Y} and it is the weakest one, that is, any possible L-*-order of \mathfrak{H} is stronger than it.
II) The order defined by $a<b$ if and only if $b=a * b$ (resp. $=b * a$) is an L-*-order in \mathfrak{N}. When $a<b$ for this order, we have

$$
\begin{equation*}
b=a * b=b * a \text {. } \tag{2.4}
\end{equation*}
$$

III) The order defined by $a<b$ whenever $b=b * a$ (resp. $=a * b$) is an L-*-order of \mathfrak{Y}, if and only if \mathfrak{H} is commutative. In the case, this is the only L-*-order of \mathfrak{A}.

The orders defined in I), II), and III) above are called the weakest, regular, and the strongest L-*-order of \mathfrak{A} respectively. These are all the same for L-o-order.

If the L-*-order $<$ and L-o-order \prec of \mathfrak{N} are mutually reciprocal, i.e. $a<b \rightleftarrows b<a$, then \mathfrak{H} is called a quasi-lattice, and further if these two reciprocal orders are both regular, \mathfrak{A} is called a regular quasilattice. Moreover, \mathfrak{H} is said to be of $(l, l),(l, r),(r, l)$ or (r, r) type according to what type (left or right) of L-*- and L-o-orders of \mathfrak{H} to be adopted.

We notice that if \mathfrak{H} is a regular quasi-lattice, \mathfrak{H} is determined only by its algebraic structure without considering any order structure, just as in usual (i.e. commutative) lattices which are defined purely algebraically by the method of F. Klein or of G. Birkhoff. ${ }^{1)}$

Theorem 3. In a quasi-lattice \mathfrak{H} of $(l, l),(l, r),(r, l)$, or (r, r) type, we have respectively

$$
\begin{align*}
& a *(a \circ x)=a=a \circ(a * x), \\
& a *(x \circ a)=a=(a * x) \circ a, \\
& (a \circ x) * a=a=a \circ(x * a), \\
& (x \circ a) * a=a=(x * a) \circ a .
\end{align*}
$$

ii)
iii)
iv)

These four equalities are called the absorption laws of the respective types.
§3. Hereafter, let \mathfrak{A} be a regular quasi-lattice and \mathfrak{M} a subsystem of \mathfrak{M} (that is, \mathfrak{M} is closed with respect to $*$ and o). If for every $a \in \mathfrak{M}$ and $p \in \mathfrak{R}$, we have
ii)
$a * p$ and $a \circ p \in \mathfrak{M}, \quad(l, l)$ type,
iii) $\quad a * p$ and $p \circ \alpha \in M, \quad(l, r)$ type,
iii) $\quad p * a$ and $a \circ p \in \mathfrak{M}, \quad(r, l)$ type,
iv) $\quad p * a$ and $p_{\circ} a \in \mathfrak{M}, \quad(r, r)$ type,
then \mathfrak{M} is called an ideal of \mathfrak{H} in respective types. ${ }^{2)}$
A usual (i.e. commutative) lattice \mathfrak{B} is simple, that is, \mathfrak{B} has a single ideal (in the present sense) which coincides with \mathfrak{B} itself.

Lemma 1. The non-void intersection or union of any numbers of

[^0]ideals of a certain common type forms also an ideal of the same type.
We say that an ideal \mathfrak{M} which contains no other ideal than \mathfrak{M} itself is a minimal ideal; then we have

Theorem 4. For each $x \in \mathfrak{A}$, there exists a minimal ideal \mathfrak{M} which contains x.

At first, if we have $y<x$ and $y<z$, or otherwise $x<y$ and $z<y$, we say that z is order-connected with x. Now, we shall prove the theorem in the case of (l,l) type. Denote by \Re_{x} the collection of all order-connected elements with x; it is clear that \mathfrak{M}_{x} forms an ideal. Suppose that there were an ideal \mathfrak{N} contained in \mathfrak{M}_{x}; for an arbitrary $z \in \Re$, we find such a y that either $x<y$ and $z<y$ or $y<x$ and $y<z$. In the first case, $y=z * y \in \mathfrak{R}$ and $x=y_{\circ} x \in \mathfrak{R}$, while in the latter $y=$ $z \circ y \in \mathfrak{R}$ and hence $x=y * x \in \mathfrak{R}$. For any $a \in \mathbb{M}_{x}$, we can conclude by the similar way that $a \in \mathfrak{R}$, since a is order-connected with $x \in \mathfrak{R}$; thus, $\mathfrak{R}=\mathfrak{M}_{x}$. For \mathfrak{Z} of any other type, it is the same at all.

On account of Lemma 1, we have
Theorem 5. A regular quasi-lattice \mathfrak{H} is decomposed in the form:

$$
\begin{equation*}
\mathfrak{H}=\sum \oplus_{\lambda \in \Lambda} \mathfrak{M}_{\lambda}, \tag{3.1}
\end{equation*}
$$

where \mathfrak{M}_{λ} is a minimal ideal for each $\lambda \in \Lambda$, and $\mathfrak{M}_{\lambda} \frown \mathfrak{M}_{\lambda^{\prime}}$ is empty for $\lambda \neq \lambda^{\prime}$.

Now, let \mathfrak{H} be of (l, l) type. When $x=x * a$, we set $a<x(*)$ and if $x<y(*)$ and simultaneously $y<x(*)$ we define $x \sim y(*)$. Then, this is a congruence relation. ${ }^{3)}$ Moreover, if $x<y$ for the (left) regular L-*-order, then $x<y(*)$ and, for any $t \in \mathfrak{Z}$, from $x<y(*)$ follows $t * x$ $<t * y(*)$. Similarly, we define $x<y(\circ)$ and $x \sim y(\circ)$.

Lemma 2. $x * y \sim y * x(*)$ and $x \circ y \sim y \circ x(\circ)$.
By these congruences, we obtain the classifications of \mathfrak{A} with respect to $*$ and \circ, denoted by $[\mathfrak{H}]^{*}$ and [$\left.\mathfrak{X}\right]^{\circ}$ respectively; these form two residual algebraic systems of \mathfrak{H} with respect to $*$ and resp. o, which are commutative by Lemma 2 and ordered by $<(*)$ resp. $<$ (०).

Theorem 6. Let \mathfrak{H} be a regular quasi-lattice; $[\mathfrak{H}]^{*}\left([\mathfrak{H}]^{\circ}\right)$ is *(resp. o-) homomorphic to \mathfrak{H}.

However, two orders $<(*)$ and $<$ (o) are not necessarily reciprocal. In order that these are mutually reciprocal, it is necessary and sufficient that
N_{1})

$$
a *(x \circ a)=a=a \circ(x * a),
$$

and if this equality is fulfiled, we have $[\mathfrak{H}]^{*}=[\mathfrak{H}]^{\circ}$ (put $=[\mathfrak{H}]$), which forms a usual lattice. ${ }^{4)}$

[^1]Now, we call the following conditions modular law in respective types: for $a<c$, and for $b \in \mathfrak{N}$,
M_{1})
M_{2})
M_{3})
M_{4})
$a *\left(b{ }^{\circ} c\right)<c^{\circ}(b * a), \quad(l, l)$ type,
$a *(c \circ b)<(b * a) \circ c, \quad(l, r)$ type,
$(b \circ c) * a<c \circ(a * b), \quad(r, l)$ type,
$(c \circ b) * a<(a * b) \circ c, \quad(r, r)$ type.

If M_{i}) is fulfiled, then N_{i}) is guaranteed for each $i=1,2,3,4$. A regular quasi-lattice \mathfrak{H} (or an ideal \mathfrak{M} in it) is called normal if for any pair a, c in \mathfrak{N} (or \mathfrak{M}) with $a<c$ the modular law is satisfied, and otherwise singular. ${ }^{5)}$ Then, we establish:

Theorem 7. A minimal ideal \mathfrak{M} of a normal regular quasilattice \mathfrak{H} forms a usual lattice to which $[\mathfrak{H}]$ is lattice-homomorphic.

Indeed, for any $x \in \mathfrak{A}, x=x *(p \circ x) \sim(p \circ x) * x \in \mathbb{M}$ for $p \in \mathbb{M}$.
Theorem 8. A regular quasi-lattice \mathfrak{A} is decomposed in direct sum of normal \mathfrak{Y}^{1} and singular \mathfrak{H}^{2},

$$
\begin{equation*}
\mathfrak{H}=\mathfrak{H}^{1} \oplus \mathfrak{H}^{2} \tag{3.2}
\end{equation*}
$$

with $\mathfrak{H}^{i}=\sum \oplus_{\lambda \in \Lambda_{i}} \mathfrak{M}_{\lambda}^{i}(i=1,2), \mathfrak{M}_{\lambda}^{1}\left(\mathfrak{M}_{\lambda}^{2}\right)$ being a normal (normal or singular) minimal ideal; moreover $\mathfrak{M}_{\lambda}^{1}\left(\lambda \in \Lambda_{1}\right)$ are usual lattices, to which [\mathfrak{A}^{1}] is lattice-homomorphic.

$$
\begin{equation*}
\mathfrak{P}_{\lambda}^{1} \cong\left[\mathfrak{M}_{\lambda}^{1}\right] \approx\left[\mathfrak{R}^{1}\right] . \tag{3.3}
\end{equation*}
$$

References

[1] G. Birkhoff: Lattice theory, Amer. Math. Coll. Publ. (1948).
[2] J. Dubreil-L. Lesieur-R. Croisot: Leçons sur la théorie des treillis, GanthierVillars (1954).
[3] P. Jordan: Zur Theorie der nichtkommutativen Verbände, Akad. Wiss. u. Lit., 2, 61-64 (1953).
[4] P. Jordan: Beiträge zur Theorie der Schrägverbände, ibid., 2, 29-42 (1956).
[5] P. Jordan-E. Witt: Zur Theorie der Schrägverbände, ibid., 5, 225-232 (1953).
[6] P. Jordan-W. Böge: Zur Theorie der Schrägverbände, ibid., 1, 79-92 (1954).
[7] F. Klein: Pseudoverband und Flechtwerk, Math. Ann., 126, 138-143 (1953).
[8] F. Klein: Multiplikative Funktionen über euklidischen und Sternverbänden, J. reine u. angewandte Math., 195, 121-126 (1956).
[9] F. Klein: Zur Axiomatik der Semigruppen, Bayerische Akad. d. Wiss., 287-294 (1957).
[10] F. Klein: Ordoid, Halbverband und ordoide Semigruppe, Math. Ann., 135, 142159 (1958).
[11] S. Matsushita: Lattice non commutatif, C. R. Acad. Sci., Paris, 1526-1527 (1953).
5) Some of the most simple models of singular regular quasi-lattice of (l, l) type are written in the following schemata i) and ii):
i) $y=x * a-b=a * x$

ii) $a * b=b * a$

($A \rightarrow B$ means $A<B$).

[^0]: 1) See e.g., F. Klein: Grundzüge der Theorie der Verbände, Math. Ann., 111 (1935) and G. Birkhoff [1], J. Dubreil-L. Lesieur-R. Croisot [2].
 2) This concept of ideal is different from that of usual lattice theory; cf. [1, 2].
[^1]: 3) That is, i) $x \sim x(*)$, ii) $x \sim y(*) \rightarrow y \sim x(*)$, iii) $x \sim y(*), y \sim z(*) \rightarrow x \sim z(*)$.
 4) N_{1}) should be replaced in $(l, r),(r, l),(r, r)$ types by
