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120. A Generalization of Vainberg’s Theorem.

By Tetsuya SHIMOGAKI
Mathematical Institute, Hokkaid6 University, Sapporo

(Comm. by K. KUNUGI, M.J.&., Oct. 13, 1958)

1. Let E be a measurable set in Euclidean n-space and f(u, t) be
a real valued function defined for u real and t in E such that it is
continuous as a function of u for almost all tE and measurable as
a function of t for all u.

By this function f(u, t) we define for every real valued measurable
function x(t)
(1.1) (x(t))- f(x(t), t).

Then (x(t)) is also measurable function on E and 59 establishes
a transformation on the space of measurable functions on E into itself.

Recently in [2 M. M. Vainberg proved that in order that
f(u, t) maps L(E) into L(E) (p, p >0) it is necessary and sufficient

that there exist a positive number y and a function a(t) belonging to

L,(E) such that

(1.2) f(u, t)

_
a(t) -riui

for all teE, u(-- , + o).
Let B be a Banach space consisting of measurable functions on

E and B* is its conjugate space. The operators ----f(u, t) which map
B into B* are particularly interesting and discussed by several authors,
because of their connection to the theory of non-linear integral opera-
tors of the form:

Ax(t)-fK(t, s)f(x(s), s)ds.

We shall generalize the Vainberg’s Theorem on modulared semi-
ordered linear spaces and point out that 29 is characterized by con-
jugately similar correspondences ) [1, 59, in the case that (C) operates
into the conjugate spaces. Here we shall prove only the fundamental
theorem, which allows to obtain the Vainberg’s Theorem in more
general form. For want of space the details will be discussed in the
following paper.

2. Let R be a modulared semi-ordered linear space,) and re(a)
(a R) be a modular on R. The totality of all elements a eR such that

1) The definition of the conjugately similar correspondence will be stated in the
following paper.

2) We suppose that semi-ordered linear space is always universally continuous in
the sequel, i.e. a0 ( e A) implies a e R. The notations and terminologies used

here are the same ones used in [1].
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m($a) < + co for every $_> 0 is called the finite manifold of R by m and
denoted by F. If F is complete (i.e. la]ibi-O for all beF im-
plies a--O), then the modular m is said to be almos finite. If F--R,
m is said to be finite. From the definition we can see easily that if
a modular m is almost finite then for every x eR, there exist Fp] 1" x]
such that m([px)< +. A modular m is said to be monotone com-
plete, if 0_<a , supm(a)<+ implies [JapeR. L(E) spaces

2A 2A 2A

(p>l) and 0rlicz spaces L(E) are examples of monotone complete
modulared spaces, with modulars

f a(t) [Pdt, too(b)--f( b(t) )dt

for a(t) e Lp(E), b(t) e L(E) respectively.

Definition. An operator H defined on R into itself is called to
be spliSable if it satisfies
(2.1) IN](Hx) H(IN]x)
for all x eR and NR.

Lemma 1. If an operator H is splitable, then we have
(2.2) H(x+y)--Hx+Hy and Hx ][Hy]--0, for x, yeR such that

(2.3) for every x, yeR there exists zeR such that Hz=HxHy.
Proof. For x, yeR such that ixily]-O, we have H(x+y)

--H([x+y](x+y))-- [x+y]H(x+y)-- Ix] H(x+y)+[y]H(x+y)--Hx
+Hy, since Ix+y] Ix] + [y] .and Ix]y- [y]x-0. Therefore (2.2) holds.

For every x, y R, HxHy- (Hx--Hy) ) +Hy- [(Hx--Hy)/]
(Hx--Hy)+Hy. Putting c--(Hx--Hy) we have HxHy--[c]Hx
+(1-- [c])Hy--H([c]x)+H((1-- [c])y)--H([c]x+(1-- [c])y). Thus (2.3)
holds with z= [c]x+(1- [c])y.

Lemma 2. Let R be a modulated semi-ordered linear space whose
modular m is monotone complete. And let p (--1, 2,...) be a sequence
of functionals on R such that

(2.4) 0_< p(a) <_ + co

(2.5) p(a+ b) <_ p(a)+p(b)
(2.6) supp([pa]a)--p(a)

(2.7) lim p(a)< + co

for every a eR and 1;
for every a I1 b i- 0 and ,>_ 1;

for every [p [a and ,>1;

for every a R.

Then there exist positive numbers , , a finite dimensional normal
manifold N and a natural number such that m(x)<_s, xe(1--[N)R
implies p(x) for every >_ o.

3) In 0rlicz space Lo(E), ms is almost finite if and only if $(u)<+oo for all
0u< +oo.

4) IN] is a projection operator defined by the least normal manifold including N.
5) a+(a R) means the positive part of a.
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Proof. The set of all maximal ideals ) of normal manifolds
constitutes a compact Hausdorff space with a neighbourhood system:
{U::NO} where U is a set of all maximal ideals to which N
belongs 1, 8. We shall first show that for arbitrary non-atomic
maximal ideal 7 of normal manifolds, we can find a normal mani-
fold Nep, positive numbers , and a natural number such that

sup p(x) for every .
mC),

We suppose that this statement is not valid for a non-atomic
maximal ideal O0 of normal manifolds. Then we shall construct a
sequence of orthogonal elements x, x,..., x,.., such that x, x,...,

xROo, m(x)< p,c(x)>, and (,+1)>(,) for all

In fact, let us assume that x, x,..., x have been chosen as above.
Since P0 is maximal, (1- x,x,..., x) ReP0. Now we can find an

element x e (1- x, x,..., x)R such that m(x) , p, )(x) >,+ 1

and (,+1)>(,)by the assumption. Since Oo is non-atomic and
satisfy the condition (2.6) there exists a normal manifold NPo such
that p,(+(Nx),+l. Here we can put x+=Nx because

e(1-- x, x,. .., x)R, x, x,. ., x, x+ROo, m(x+) and

For the sequence thus obtained, since m(x)gl for every

0-Ux exists in R because of monotone completeness of m. On the

other hand, since p<)(Xo)p<)(xXo)=p()(x), we obtain

which contradicts (2.7).
Therefore we have shown that for every non-atomic P there exist

a normal manifold N, positive numbers , 7 and a natural number
for which the above statement holds.

We denote by the totality of all non-atomic p e. And let N0
be the least normal manifold including all N (pe). Then we have

k

U:o=( U:)- 1, 8. On the other hand each pe U.o-- U:
is non-atomic as easily seen, we have U0 U. Since Uo is com-

pact, there exists a finite number of p e e, that is, P, p,..., P such that

U:0 U. Putting y= y, e Min {e} and p0 Max

6) A system p of normal manifolds is called an ideal if i) 0 50; ii) 0 3 McN im-
plies 03N; iii) p3N, M implies 03N.M. An ideal p is said to be maximal if there
exists no other ideal containing [1, 8J.

7) An ideal is said to be non-atomic, if 03N, there exists M=N such that
Mep.
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we obtain by (2.5) and (2.6)

,1

for any x[No]R, m(x) and 0.
Here (1-- [N0])R is finite-dimensional, because, when (1-- [No])R

is infinite-dimensional, there exists at least a non-atomic maximal ideal
p such that P(1--[N0])R. Thus Lemma is proved.

R is said to be non-atomic if every x eR with x0 can be de-
composed into two orthogonal elements: x-y+z, y,zO, IyIz]-O.

Now we shall prove the following fundamental theorem:
Theorem 1. Let R be a non-atomic modulared semi-ordered linear

space whose modular m is monotone complete. Then in order that for
any splitable operator H on R there exist a positive number T>O and
an element R c 0 such that
(2.s) Hx x for all xeR,
it is necessary and sucient that m is almost finite.

Proof. Suciency. For a splitable operator H we put p(x)

=m(Hx) .for uland x eR. Since for every [p] Ix]

U
p(x) satisfies the condition (2.6) for each 1 by virtue of semi-
continuity of the modular m. Because of the modular conditions and
formula (2.2), we can see that the functionals p ( 1) satisfy (2.4),
(2.5) and (2.7) in the previous lemma. Hence there exist positive
number s, 3 and a natural number 0 such that m(x)e implies

m(Hx.. Let Tbeapositivenumbersuchthat >Tand >1.
ko / P0
We define an operator T for xR as

Since T([N]x)-] H([N]x) -- [N]xI--[N]([ Hx -- x ), T is also
splitable. Suppose that TxO and m(x)>s. Then we can find a pro-
jection operator IN] such that m([N]x)--, since m is almost finite
and R is non-atomic. For such [Nix we have

>m 1 H([N]x) > m [N][ yx[ >-- m([N]x)>,
lo

which is a contradiction. Therefore TxA 0 implies re(x) and fortiori

By virtue of (2.3), the set [Tx’xR} is directed, so there exists
O TxR, because of monotone completeness of m. Thus we have

Hx g U Tx+ T[ x for all x R.s)

8) The author indebted to Prof. I. Amemiya for this proof, simpler than the
original one.
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Necessity. If m is not almost finite, then we can find an element
Rao>_O such that [1, 35, 45]

m([pa0)- - c if [p [_a0 == 0.

a0 is a strong unit in [aoR, i.e. for every xe[aoR there exists $0
such that x]$ao.

By assumption R is non-atomic, then we can decompose ao into

infinite numbers of positive orthogonal elements: ao- a., aa,-O

(,). For every , we define an operator , on [aR as

[a]

where (x, p)-

(’ ) if (, )> 1.

Pot any R, utting H--[a we obtain a slitable oerator
on R into itself. Since H(ua)=a, H has not the form (2.8) in any
way. he roof is eomleted.

When R is a giefete modlafeg aee, heorem 1 does not re-
main true. Here we shall comment shortly on the ease that R is
discrete.

Let Ra be an almost finite, monotone complete modulafed space
which is discrete. Then there exist R e 0 (2 e) such that m(e)- 1,
ere--0 if , and for any OxR we can find the positive numbers
--(x)0 (2e) for which x-Ue holds. For arbitrary positive

number a we denote by B the totality of all x eR such that $(x) ia

for all 2 e. When R is discrete, the theorem corresponding to the
previous one is stated as follows:

Theorem 1’. For any splitable operator H on R into itself there
exist positive numbers y, a, a finite dimensional normal manifold
M and an element ceR for which formula (2.8)holds for every
x(1--[M)B.

The method of proof of this theorem is analogous to those of
Lemma 2 and Theorem 1, thus we omit it here.

Remark 1. When R is a non-atomic normed semi-ordered linear
space, p(x)- x (x e R) satisfy the conditions (2.4), (2.5) and (2.7).
Thus from the proofs of Lemma 2 and Theorem 1 we can conclude
that any splitable operator H on R into itself has the form (2.8) if
the norm x on R satisfies i) ] x ] is monotone complete, i.e. 0x

9) (-,v)is a relative spectrum of b by a at p [1, 10].
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sup !1 x I! < q- o implies J x R; ii) for any x e R, and
A

there exists p such that l] px [[-.
Remark 2. Let R be a semi-ordered linear space satisfying the

all hypotheses of Theorem 1 (or Remark 1) and C be a subset of R
with the conditions: i) aeC, IbiS[a[ implies beC; ii) a, beC, [a][b[-0
implies a+beC; iii) 0a(2 e A), sup m(a)< + implies a eC. Then

2A A
a spliable operaor defined on C into R has he form (.8) for all
This is ascertained by he roos of Lemmas and Theorem 1.
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