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(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1958)

1. Let G be a countably infinite group and 4 the Hilbert space
of all complex-valued functions g—f(g) such that >),c. | f(9)|* is finite.
For each geg, let U, be the unitary operator on 4 defined by
LU, f19)=f(9'9) and let M(G) the ring of operators generated by
{U,},ce- Murray and von Neumann have shown that M(Q) is a factor
of type II, if all non-trivial conjugate classes of & are infinite, and
further proposed to expand an arbitrary countably infinite group to
a group which has the above property. These results can also be
interpreted in the following way: An arbitrary countably infinite
group admits a faithful representation on a group of inner automor-
phisms of a factor of the case (II,) on a separable Hilbert space.

The object of the present paper is to show the following

Theorem. Let G be an arbitrary countable group, then G 1is
iwsomorphic to a group of outer automorphisms of the approximately
finite factor on a separable Hilbert space.

By an automorphism of a factor, we understand a *-automorphism,
and by a group of outer automorphisms of a factor, we understand
a group of automorphisms in which all but the unit element are
outer. In proving our theorem, it is sufficient to show the case where
G is countably infinite. Indeed, let G be a finite group. Then, for
any countably infinite group G (for example the additive group of
integers), the direct product GXG is countably infinite and G is
embedded isomorphically into GX G

The restriction that G is countably infinite is not essential. For
an arbitrary group, such a representation will probably be possible, be-
cause it will probably be represented as a group of outer automorphisms
of a generalized approximately finite factor on an arbitrary (not
necessarily separable) Hilbert space. Only for the sake of the sim-
plicity, we confine a group G to be countable.

Noting that approximately finite factors on a separable Hilbert
space are all x-isomorphic to each other [2], our theorem yields that
an approximately finite factor on a separable Hilbert space has a group
of outer automorphisms isomorphic to an arbitrary countable group.
Actually, this note arose from the investigation of the crossed products
of rings of operators.”

1) Cf. N. Suzuki: Crossed products of rings of operators, to appear.
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2. Let G be an arbitrary countably infinite group and let 4 the
set of all functions a(g) on G as follows: a(g)=1 on a finite subset
of G, and =0 otherwise. Define the addition in 4: for a(g), B(9)e4,
La+B1(9)=a(g)+B(g) (mod 2), then 4 is obviously an additive group
with the unit 0(g)=0 (¢g¢G). Let 4’ be the set of all functions ¢(y)
on 4 as follows: ¢(y)=1 on a finite subset of 4, and =0 otherwise, and
make 4’ into an additive group by defining the addition: for ¢(7),
d(ned, [o+¢1()=e(r)+¢(r) (mod 2). Now we define the operation
on 4’ as follows: for ¢ed’, acd,

e*(r)=¢(r+a),
and make the pair (4', 4) into a group by defining
(¢, a)(¢, B)=(¢"+¢, a+B)

for a, Bed, o, ded’. Then the unit of the group ¢=(4', 4) is (0,0), 0
being the wunit of 4’ and 4 with the same notation, and the inverse
is clearly (¢, a)*=(¢ %, —a)=(¢% a). Let H be the Hilbert space of
all complex-valued functions (¢, a)—>f((¢, )) such that >, o <| (@, a))|?
is finite, and for each (¢, a)e@G let V,, ., be a unitary operator on H
defined by [Vi,, oS/ 1(¢, B))=S((¢, B)(¢, @)). We denote by M the ring
of operators generated by {Vi,, o}, we e

At first, it must be shown that M is a factor of type II,. Indeed,
assume that (¢, a)3(0,0). If ¢=0 then (0, 8) *(¢, a)(0, B)=(¢? a)
yields that (0, 8)-'(¢, a)(0, B) are infinitely many since there are infinite
many distinet ¢?(8ed).? If ¢=0 then (¢, 0)"*(0, a)(¢, 0)=(¢*+¢, a)
and there exist infinitely many distinet ¢*+¢ if ¢ runs over 4'.®
Therefore, all non-trivial conjugate classes are infinite. We can con-
clude that M is a factor of type II,.

Moreover, we obtain the following

Lemma 1. The group G is locally finite and M is an approxi-
mately finite factor.

Proof. First we see easily that 4 is locally finite. Let & be a
finite set of &G, then each of the sets 4'g={y; (¢, a)eF}, dg={a; (¢, a)

€} and dg,= E[;,ﬁ{aed; ¢(a)=1} is a finite set. Denoting by 4z the
finite sr,ubgroupqa of 4 generated by the finite set 49— 49, and setting
dg={ped; ¢(a)=0 on the outside of Jg}, it is easily verified that
(4'g, 49) is a finite group containing F. Hence & is locally finite and

2) Since ¢=0, there is an ay€4 such that ¢(e)=1. If we pick up a sequence
{B:} in 4 such that a,+p; are all distinct, then each ¢#: takes the value 1 on a,+8;.
Since each ¢fi takes the value 1 on a finite set of 4, there must be an infinite num-
ber of distinct ¢fi.

8) Let ¢; be a sequence in 4" such that ¢«B;)=1, and =0 otherwise, where {B;}
is a sequence of all distinet elements in 4. Then ¢;*+¢;=¢;*+¢; implies B;+e=a;
and Bj+a=p;. Thus there can never coincide more than two ¢;*+¢;, and hence there
are infinitely many different ¢;*+¢;.
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we see by [2, Lemma 5.6.17 that M is an approximately finite factor.

3. Put G,=(0, 4), then &, is an abelian subgroup of & and the
subring M, in M corresponding to G, is also abelian.

We shall prove the following

Lemma 2. M, is a maximal abelian subring of M which pos-
sesses the property:
(*) A wunitary operator U of M such that U-*M,UZ M, belongs to M,.

In order to prove this lemma, we need the following lemma in
[1].

Lemma 3. Assume that (1) for each geG, ge G, the set {9,99:%
9,6 Gy} ts infinite, and (II) for each finite set F of G, there exists
9.€G, such that
(1) for each ge<F, g-'g,9¢ G, implies geG,,
(2) the conditions g,9'c¢F, g7'9,9'=9, tmply 9=9'. Then M, is a
maximal abelian subring which possesses the property (x).

Proof of Lemma 2. We have seen in the preceding section that
G, fulfils the property (I) in Lemma 3. Thus it needs only to prove
that G, fulfils the property (II). Put 4i={¢p; (¢, a)eF} for each finite
set & of G, 4} is finite. Setting

4o= U {red; o(n=1},
eE 4

4, is also finite, and hence the set 4,+4, is finite. Since 4 is in-
finite, there exists an a,€4 such that a,€4,+4,. Then

(@, @) 10, ap)(¢, B)=(¢", a)(0, @)(¢, B)=(9"****+¢, a+ay+ B).

Ad (1). For (¢, a)ed, (¢, a) 10, ay)(e, a)=(¢*+¢, ay)e G, implies
e*+9=0, or p=¢. If o0, ¢(r)==0 on 4,, On the other hand,
since (dy+ag)~do=¢, ¢*(r)=¢(r+a;)=0 on 4,. This contradiction
yields ¢=0, or (¢, a)cg,.

Ad (2). For (¢, a), (¢, B)ed, (9, a)"0, @)(¢, B)=(0, ay) implies
a=pand ¢=¢. If =0, &(r) =0 on 4, but as seen in above, ¢*(r)=0
on 4,. This contradiction yields ¢=¢=0, or (¢, a)=(¢, B).

4. In the sequel, we shall consider to represent G on a group
of automorphisms of M.

For this purpose, it is necessary to map G on a group of auto-
morphisms of 4 and 4.

Lemma 4. For each g<G, define a transformation T, on 4 as
JSollows:

[T,a](9")=a(g9") for all acd,
and further define a transformation T, on 4’ as follows:
[Tl(a)=¢(T,_1a) for all ped
Then the mapping g—>T,(T,) is an anti-isomorphism of G onto a
group of automorphisms of 4(4’) respectively.
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Proof. It is clear that T,(gcG) are automorphisms of 4. For
all aed,

[T,,T,,a](9")=[T,,al(9:9")=(9:9:9")= [Ty, a1(9');
hence g—T, is an anti-homomorphism of G onto a group of auto-
morphisms {T}} of 4. It must be shown that it is an anti-isomorphisms.
Indeed, if g=re, for a fixed g,€G, there is an a,€4 such that a,(g,)=0
and a4(99,)=1, and so T,a,=a,.

For all e,

[Ty T501(e)=[T5,01(Tor1 ) =¢(Tor1 Tprrax)
=¢(T(glg,>_1 a)= [Télgz ¢](a)
implies T;, =71, T;. Hence, for the remainder, the similar one to
the above proof is adapted.
Lemma 5. For each geG, define the operator U, on H as follows:
LU (¢, a))=F(T}e, T,a)) for all feH.
Then the mapping g—U, is a faithful unitary representation of G
on H.
Proof. Each U, is unitary: For each fecH,
” Uaf ”2"_"2(%«)65 I [Uof]((% a)) |2=2<¢,a>es If((Tg y Tga)) l2
=3, mee | S, B) P=1F11%

and so U,fe¢H and U, is unitary. Further the remainder of the
proof is assured by Lemmas 4, 5.

Lemma 6. For each geG, define a mapping 6, of M as follows:

Ve ay=Up1 Vi, s U, for all Vi, .cM.

Then the mapping g—>0, is a faithful representation of G onto a
group of automorphisms of M.

Proof. By the above lemma, we need only to prove that each 6,
is an automorphism of M. Indeed, first noting that
T} = (Toa $Y(Tyrp) = [Ths§ Ty a7 + @) = (T, Ty a7 + T)
=d(r+T,a)=¢""(r) for ¢ed’ and acd, we obtain that for each feH,

[Ug‘l 1’(@ a) Ugf]((¢’ ‘B))': [‘f(w, a) Uqf]((Tle‘l‘,b: Tg—l ﬁ))

=[U,f1(T5-1¢, T~ B)e, a))=LU, S U(Ti-1¢)*+¢, Ty-1 B+a))

=f(TAT5¢)+ T;0, B+ T,))=f(¢""+ T5e, B+ T,a))

=f((¢, IB)(TégD’ Tga'))= [V(T,’,¢, Tga>f:|((¢’ 18))°
Hence U;-1Vi, U= Virye, rger

Now the theorem is readily followed from the above lemmas.

The proof of the theorem. By Lemma 6, we see that each 4, is
an automorphism of M conserving M, and hence it is sufficient from
Lemma 2 to prove that each 6, does not keep M, elementwise in-
variant. In fact,

Vco, = Uy‘l ©, @ Ug= V<0, Ty
implies (0, «)=(0, T,a), or a=T,a for all acd, and hence g=e.
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