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1. Let _ff be a countably infinite group and the Hilbert space
of all complex-valued functions g-->f(g) such that ,gez If(g)[ is finite.
For each g e_ff, let Ug be the unitary operator on defined by
Uf(g’)--f(g’g) and let M() the ring of operators generated by
{Ug}ge. Murray and von Neumann have shown that M() is a factor
of type II if all non-trivial conjugate classes of are infinite, and
further proposed to expand an arbitrary countably infinite group to
a group which has the above property. These results can also be
interpreted in the following way: An arbitrary countably infinite
group admits a faithful representation on a group of inner automor-
phisms of a factor of the case (II) on a separable Hilbert space.

The object of the present paper is to show the following
Theorem. Let G be an arbitrary countable group, then G is

isomorphic to a group of outer automorphisms of the approximately

finite factor on a separable Hilbert space.
By an automorphism of a factor, we understand a .-automorphism,

and by a group of outer automorphisms of a factor, we understand
a group of automorphisms in which all but the unit element are
outer. In proving our theorem, it is sufficient to show the case where
G is countably infinite. Indeed, let G be a finite group. Then, for
any countably infinite group G’ (for example the additive group of
integers), the direct product GG’ is countably infinite and G is
embedded isomorphically into G G’.

The restriction that G is countably infinite is not essential. For
an arbitrary group, such a representation will probably be possible, be-
cause it will probably be represented as a group of outer automorphisms
of a generalized approximately finite factor on an arbitrary (not
necessarily separable) Hilbert space. Only for the sake of the sim-
plicity, we confine a group G to be countable.

Noting that approximately finite factors on a separable Hilbert
space are all ,-isomorphic to each other [2, our theorem yields that
an approximately finite factor on a separable Hilbert space has a group

of outer automorphisms isomorphic to an arbitrary countable group.
Actually, this note arose from the investigation of the crossed products
of rings of operators.)

1) cf. N. Suzuki: Crossed products of rings of operators, to appear.
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2. Let G be an arbitrary countably infinite group and let z/ the
set of all functions a(g) on G as follows: a(g)-I on a finite subset
of G, and -0 otherwise. Define the addition in /: for a(g), /(g)e/,
o--(g)--o(g)+(g) (mod 2), then / is obviously an additive group
with the unit O(g)-O (geG). Let /’ be the set of all functions (r)
on /_/ as follows: ()-1 on a finite subset of , and -0 otherwise, and
make ’ into an additive group by defining the addition: for (),
(’)z/’, [+(’)--(’)+(’) (mod 2). Now we define the operation
on /’ as follows: for

and make the pair (/’, ) into a group by defining

for a,/e/, , ,e/’. Then the unit of the group _q=(z/’, z/) is (0, 0), 0
being the unit of z/’ and z/ with the same notation, and the inverse
is clearly (9, a)-l--((-, --a)--(, a). Let H be the Hilbert space of
all complex-valued functions (, a)-f((,
is finite, and ior each (, a) let V(. be a unitary operator on H
defined by [V(,f((, 5))--f((, fi)(, a)). We denote by M the ring
of operators generated by { V(, }(,

At first, it must be shown that M is a factor of type II. Indeed,
assume that (, a)=(0, 0). If 0 then (0, )-(, a)(0, fl)--(,
yields that (0,/9)-((?, a)(0, fl) are infinitely many since there are infinite
many distinct (flz/). If --0 then (,0)-(0,)(,0)--(+,)
and there exist infinitely many distinct
Therefore, all non-trivial conjugate classes are infinite. We can con-
clude that M is a factor of type Ii.

Moreover, we obtain the following
Lemma 1. The group is locally finite and M is an approxi-

mately finite factor.
Froof. First we see easily that / is locally finite. Let be a

finite set of _if, then each of the sets

e} and z/0- [J {ae/_/; (a)-l} is a finite set. Denoting by / the

finite subgroup of / generated by the finite set //0 and setting

z/’-{e/’;(a)-0 on the outside of z/}, it is easily verified that

(/_/’, z/) is a finite group containing . Hence _ff is locally finite and

2) Since 0, there is an 0e z/ such that (ro)=1. If we pick up a sequence
{/,} in z such that a0+t are all distinct, then each takes the value 1 on a0+,.
Since each , takes the value 1 on a finite set of z, there must be an infinite num-
ber of distinct *.

3) Let be a sequence in zi’ such that (;9,)=1, and =0 otherwise, where
is a sequence of all distinct elements in a. Then +,=.+] implies /,+=a2
and /+=. Thus there can never coincide more than two ,+, and hence there
are infinitely many different ,+.
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we see by F_2, Lemma 5.6.1 that M is an approximately finite factor.
3. Put -fro--(0, zl), then _Go is an abelian subgroup of L and the

subring Mo in M corresponding to -fro is also abelian.
We shall prove the following
Lemma 2. Mo is a maximal abelian subring of M which pos-

sesses the property:
A unitary operator U of M such that U-MoUMo belongs to Mo.

In order to prove this lemma, we need the following lemma in

Lemma 3. Assume that I for each g , g o, the set {goggle;
go’o} is infinite, and (II)for each finite set F of , there exists
g-o such that
1 ) for each g , g-gg o implies g o,

( 2 the conditions g, g’ , g-gg’--g imply g-- g’. Then Mo is a

maximal abelian subring which possesses the property (.).
Proof of Lemma 2. We have seen in the preceding section that

o fulfils the property (I) in Lemma 3. Thus it needs only to prove
that _6’0 fulfils the property (II). Put zVo={.; (,a)} for each finite
set of _if, z/o is finite. Setting

U {r

Ao is also finite, and hence the set Z/o+Z/o is finite. Since z/ is in-
finite, there exists an ao e z/ such that ao Zo+Z/o. Then

(v, ,)-’(o,-o)(,
Ad (1). For (9, a), (9, a)-(0, a0)(9, a)--(9+9, ao)-ffo implies

9"+9--0, or 9o--9. If (? 0, (?(’) 0 on /o. On the other hand,
since (Z/o+ao)Z/o-, 9"()-9(’+ao)----0 on Z/o. This contradiction
yields 9-0, or (9, a)eo.

Ad (2). For (9, a), (,/)ff, (9, a)-(0, ao)(, fl)--(0, o) implies

a-. and 9"o=/,. If 0, (’)-0 on Z/o, but as seen in above, 9"o(r)=--O
on z/0. This contradiction yields 9=-0, or (9, a)-(, ).

4. In the sequel, we shall consider to represent G on a group
of automorphisms of M.

For this purpose, it is necessary to map G on a group of auto-
morphisms of z/ and

Lemma 4. For each gG, define a transformation T on as

follows:
for

and further define a transformation T on ’ as follows:
for

Then the mapping g-T(T) is an anti-isomorphism of G onto a
group of automorphisms of (’) respectively.
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Proof. It is clear that T(geG) are automorphisms of A. For
all

hence gT is an anti-homomorphism of G onto a group of auto-
morphisms {T} of . It must be shown that it is an anti-isomorphisms.
Indeed, if ge, for a fixed g0 e G, there is an a0 e A such that a0(go)--0
and a0(gg0)-l, and so Ta0a0.

For all e A’,
[T’T,()-- [T,(T;)--(T:T)

implies T’ =T’T, Hence, for the remainder, the similar one to
the above proof is adapted.

Lemma 5. For each g e G, define the operator U on H as follows:
[Uf((,a))=f((T, Ta)) for all fH.

Then the mapping gU is a faithful unitary representation of G
on H.

Proof. Each Uq is unitary: For each fH,

and so UfeH and U is unitary. Further the remainder of the
proof is assured by Lemmas 4, 5.

Lemma 6. For each g eG, define a mapping 8 of M as follows:

Then the mapping g8 is a faithful representation of G onto a
group of automorphisms of M.

Proof. By the above lemma, we need only to prove that each
is an automorphism of M. Indeed, first noting that
T(T-)(r) T-I)"(T-l r)
=([+Ta)--r"(y) for CeA’ and ae, we obtain that for each fell,

[ u- v<, .uf((, ))- [v, .>u/((T-, T-))
[ Uf3((T-, T- fl)(9, a))-- [ Uf3(((T_l)"+e,

=f((T(T-I)"+ Te, fl+ T a))=f((,+ Te, fl+ Ta))
=f((, )(T;v, T))-[V<, )f((, )).

Hence U-
Now the theorem is readily followed from the above lemmas.
The proof of the theorem. By Lemma 6, we see that each 0 is

an automorphism of M conserving M0, and hence it is sufficient from
Lemma 2 to prove that each 8 does not keep M0 elementwise in-
variant. In fact,

implies (O,a)--(O, Ta), or a--Ta for all aeA, and hence g--e.
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