131. A Linear Representation of a Countably Infinite Group

By Noboru Suzuki

Mathematical Institute, Tôhoku University (Comm. by K. Kunugi, M.J.A., Nov. 12, 1958)

1. Let \mathcal{G} be a countably infinite group and \mathcal{H} the Hilbert space of all complex-valued functions $g \to f(g)$ such that $\sum_{g \in \mathcal{G}} |f(g)|^2$ is finite. For each $g \in \mathcal{G}$, let U_g be the unitary operator on \mathcal{H} defined by $[U_g f](g') = f(g'g)$ and let $M(\mathcal{G})$ the ring of operators generated by $\{U_g\}_{g \in \mathcal{G}}$. Murray and von Neumann have shown that $M(\mathcal{G})$ is a factor of type Π_1 if all non-trivial conjugate classes of \mathcal{G} are infinite, and further proposed to expand an arbitrary countably infinite group to a group which has the above property. These results can also be interpreted in the following way: An arbitrary countably infinite group admits a faithful representation on a group of inner automorphisms of a factor of the case (Π_1) on a separable Hilbert space.

The object of the present paper is to show the following

Theorem. Let G be an arbitrary countable group, then G is isomorphic to a group of outer automorphisms of the approximately finite factor on a separable Hilbert space.

By an automorphism of a factor, we understand a *-automorphism, and by a group of outer automorphisms of a factor, we understand a group of automorphisms in which all but the unit element are outer. In proving our theorem, it is sufficient to show the case where G is countably infinite. Indeed, let G be a finite group. Then, for any countably infinite group G' (for example the additive group of integers), the direct product $G \times G'$ is countably infinite and G is embedded isomorphically into $G \times G'$.

The restriction that G is countably infinite is not essential. For an arbitrary group, such a representation will probably be possible, because it will probably be represented as a group of outer automorphisms of a generalized approximately finite factor on an arbitrary (not necessarily separable) Hilbert space. Only for the sake of the simplicity, we confine a group G to be countable.

Noting that approximately finite factors on a separable Hilbert space are all *-isomorphic to each other [2], our theorem yields that an approximately finite factor on a separable Hilbert space has a group of outer automorphisms isomorphic to an arbitrary countable group. Actually, this note arose from the investigation of the crossed products of rings of operators.¹³

¹⁾ Cf. N. Suzuki: Crossed products of rings of operators, to appear.

2. Let G be an arbitrary countably infinite group and let Δ the set of all functions $\alpha(g)$ on G as follows: $\alpha(g)=1$ on a finite subset of G, and =0 otherwise. Define the addition in Δ : for $\alpha(g)$, $\beta(g) \in \Delta$, $[\alpha+\beta](g)=\alpha(g)+\beta(g)\pmod{2}$, then Δ is obviously an additive group with the unit 0(g)=0 $(g\in G)$. Let Δ' be the set of all functions $\varphi(\gamma)$ on Δ as follows: $\varphi(\gamma)=1$ on a finite subset of Δ , and =0 otherwise, and make Δ' into an additive group by defining the addition: for $\varphi(\gamma)$, $\psi(\gamma)\in \Delta'$, $[\varphi+\psi](\gamma)=\varphi(\gamma)+\psi(\gamma)\pmod{2}$. Now we define the operation on Δ' as follows: for $\varphi\in \Delta'$, $\alpha\in \Delta$,

$$\varphi^{\alpha}(\gamma) = \varphi(\gamma + \alpha),$$

and make the pair (Δ', Δ) into a group by defining

$$(\varphi, \alpha)(\psi, \beta) = (\varphi^{\beta} + \psi, \alpha + \beta)$$

for $\alpha, \beta \in \mathcal{A}, \varphi, \psi \in \mathcal{A}'$. Then the unit of the group $\mathcal{G} = (\mathcal{A}', \mathcal{A})$ is (0, 0), 0 being the unit of \mathcal{A}' and \mathcal{A} with the same notation, and the inverse is clearly $(\varphi, \alpha)^{-1} = (\varphi^{-\alpha}, -\alpha) = (\varphi^{\alpha}, \alpha)$. Let H be the Hilbert space of all complex-valued functions $(\varphi, \alpha) \to f((\varphi, \alpha))$ such that $\sum_{(\varphi, \alpha) \in \mathcal{A}} |f((\varphi, \alpha))|^2$ is finite, and for each $(\varphi, \alpha) \in \mathcal{A}$ let $V_{(\varphi, \alpha)}$ be a unitary operator on H defined by $V_{(\varphi, \alpha)} = f((\psi, \beta)) = f((\psi, \beta)(\varphi, \alpha))$. We denote by M the ring of operators generated by $V_{(\varphi, \alpha)} = f((\psi, \alpha)(\varphi, \alpha))$.

At first, it must be shown that M is a factor of type II_1 . Indeed, assume that $(\varphi, \alpha) \neq (0, 0)$. If $\varphi \neq 0$ then $(0, \beta)^{-1}(\varphi, \alpha)(0, \beta) = (\varphi^{\beta}, \alpha)$ yields that $(0, \beta)^{-1}(\varphi, \alpha)(0, \beta)$ are infinitely many since there are infinite many distinct $\varphi^{\beta}(\beta \in \Delta)$. If $\varphi = 0$ then $(\psi, 0)^{-1}(0, \alpha)(\psi, 0) = (\psi^{\alpha} + \psi, \alpha)$ and there exist infinitely many distinct $\psi^{\alpha} + \psi$ if ψ runs over Δ' . Therefore, all non-trivial conjugate classes are infinite. We can conclude that M is a factor of type II_1 .

Moreover, we obtain the following

Lemma 1. The group \mathcal{G} is locally finite and M is an approximately finite factor.

Proof. First we see easily that Δ is locally finite. Let \mathcal{F} be a finite set of \mathcal{G} , then each of the sets $\Delta'\mathcal{F} = \{\varphi; (\varphi, \alpha) \in \mathcal{F}\}$, $\Delta \mathcal{F} = \{\alpha; (\varphi, \alpha) \in \mathcal{F}\}$ and $\Delta \mathcal{F}_0 = \bigcup_{\varphi \in \Delta'\mathcal{F}} \{\alpha \in \Delta; \varphi(\alpha) = 1\}$ is a finite set. Denoting by $\overline{\Delta}\mathcal{F}$ the finite subgroup of Δ generated by the finite set $\Delta \mathcal{F} \cup \Delta \mathcal{F}_0$ and setting $\overline{\Delta}'\mathcal{F} = \{\varphi \in \Delta'; \varphi(\alpha) = 0 \text{ on the outside of } \overline{\Delta}\mathcal{F}\}$, it is easily verified that $(\overline{\Delta}'\mathcal{F}, \overline{\Delta}\mathcal{F})$ is a finite group containing \mathcal{F} . Hence \mathcal{G} is locally finite and

²⁾ Since $\varphi \rightleftharpoons 0$, there is an $\alpha_0 \in \mathcal{A}$ such that $\varphi(\alpha_0) = 1$. If we pick up a sequence $\{\beta_i\}$ in \mathcal{A} such that $\alpha_0 + \beta_i$ are all distinct, then each φ^{β_i} takes the value 1 on $\alpha_0 + \beta_i$. Since each φ^{β_i} takes the value 1 on a finite set of \mathcal{A} , there must be an infinite number of distinct φ^{β_i} .

³⁾ Let φ_i be a sequence in Δ' such that $\psi_i(\beta_i)=1$, and =0 otherwise, where $\{\beta_i\}$ is a sequence of all distinct elements in Δ . Then $\psi_i{}^{\alpha}+\psi_i=\psi_j{}^{\alpha}+\psi_j$ implies $\beta_i+\alpha=\alpha_j$ and $\beta_j+\alpha=\beta_i$. Thus there can never coincide more than two $\psi_i{}^{\alpha}+\psi_i$, and hence there are infinitely many different $\psi_i{}^{\alpha}+\psi_i$.

we see by [2, Lemma 5.6.1] that M is an approximately finite factor.

3. Put $\mathcal{G}_0=(0, \Delta)$, then \mathcal{G}_0 is an abelian subgroup of \mathcal{G} and the subring M_0 in M corresponding to \mathcal{G}_0 is also abelian.

We shall prove the following

Lemma 2. M_0 is a maximal abelian subring of M which possesses the property:

(*) A unitary operator U of M such that $U^{-1}M_0U \subseteq M_0$ belongs to M_0 . In order to prove this lemma, we need the following lemma in [1].

Lemma 3. Assume that (I) for each $g \in \mathcal{G}$, $g \in \mathcal{G}_0$, the set $\{g_0 g g_0^{-1}; g_0 \in \mathcal{G}_0\}$ is infinite, and (II) for each finite set \mathcal{F} of \mathcal{G} , there exists $g_1 \in \mathcal{G}_0$ such that

(1) for each $g \in \mathcal{F}$, $g^{-1}g_1g \in \mathcal{G}_0$ implies $g \in \mathcal{G}_0$,

(2) the conditions $g, g' \in \mathcal{F}, g^{-1}g_1g' = g_1 \text{ imply } g = g'$. Then M_0 is a maximal abelian subring which possesses the property (*).

Proof of Lemma 2. We have seen in the preceding section that \mathcal{Q}_0 fulfils the property (I) in Lemma 3. Thus it needs only to prove that \mathcal{Q}_0 fulfils the property (II). Put $\mathcal{Q}_0 = \{\varphi; (\varphi, \alpha) \in \mathcal{F}\}$ for each finite set \mathcal{F} of \mathcal{Q} , \mathcal{Q}_0 is finite. Setting

$$\Delta_0 = \bigcup_{\varphi \in \Delta_0'} \{ \gamma \in \Delta; \varphi(\gamma) = 1 \},$$

 Δ_0 is also finite, and hence the set $\Delta_0 + \Delta_0$ is finite. Since Δ is infinite, there exists an $\alpha_0 \in \Delta$ such that $\alpha_0 \in \Delta_0 + \Delta_0$. Then

$$(\varphi,\alpha)^{-1}(0,\alpha_0)(\psi,\beta) = (\varphi^{\alpha},\alpha)(0,\alpha_0)(\psi,\beta) = (\varphi^{\alpha+\alpha_0+\beta}+\psi,\alpha+\alpha_0+\beta).$$

Ad (1). For $(\varphi, \alpha) \in \mathcal{F}$, $(\varphi, \alpha)^{-1}(0, \alpha_0)(\varphi, \alpha) = (\varphi^{\alpha_0} + \varphi, \alpha_0) \in \mathcal{G}_0$ implies $\varphi^{\alpha_0} + \varphi = 0$, or $\varphi^{\alpha_0} = \varphi$. If $\varphi \neq 0$, $\varphi(\gamma) \not\equiv 0$ on \mathcal{L}_0 . On the other hand, since $(\mathcal{L}_0 + \alpha_0) \cap \mathcal{L}_0 = \varphi$, $\varphi^{\alpha_0}(\gamma) = \varphi(\gamma + \alpha_0) \equiv 0$ on \mathcal{L}_0 . This contradiction yields $\varphi = 0$, or $(\varphi, \alpha) \in \mathcal{L}_0$.

Ad (2). For (φ, α) , $(\psi, \beta) \in \mathcal{F}$, $(\varphi, \alpha)^{-1}(0, \alpha_0)(\psi, \beta) = (0, \alpha_0)$ implies $\alpha = \beta$ and $\varphi^{\alpha_0} = \psi$. If $\psi \neq 0$, $\psi(\gamma) \not\equiv 0$ on Δ_0 , but as seen in above, $\varphi^{\alpha_0}(\gamma) \equiv 0$ on Δ_0 . This contradiction yields $\varphi = \psi = 0$, or $(\varphi, \alpha) = (\psi, \beta)$.

4. In the sequel, we shall consider to represent G on a group of automorphisms of M.

For this purpose, it is necessary to map G on a group of automorphisms of Δ and Δ' .

Lemma 4. For each $g \in G$, define a transformation T_g on Δ as follows:

$$[T_g\alpha](g') \!=\! \alpha(gg') \ for \ all \ \alpha \!\in\! \varDelta,$$

and further define a transformation T'_g on Δ' as follows:

$$[T'_{\varphi}\varphi](\alpha) = \varphi(T_{g-1}\alpha) \text{ for all } \varphi \in \Delta'.$$

Then the mapping $g \rightarrow T_g(T'_g)$ is an anti-isomorphism of G onto a group of automorphisms of $\Delta(\Delta')$ respectively.

Proof. It is clear that $T_g(g \in G)$ are automorphisms of Δ . For all $\alpha \in \Delta$,

$$[T_{g_1}T_{g_2}\alpha](g') = [T_{g_2}\alpha](g_1g') = \alpha(g_2g_1g') = [T_{g_2g_1}\alpha](g'),$$

hence $g \to T_g$ is an anti-homomorphism of G onto a group of automorphisms $\{T_g\}$ of Δ . It must be shown that it is an anti-isomorphisms. Indeed, if $g \neq e$, for a fixed $g_0 \in G$, there is an $\alpha_0 \in \Delta$ such that $\alpha_0(g_0) = 0$ and $\alpha_0(gg_0) = 1$, and so $T_g\alpha_0 \neq \alpha_0$.

For all $\varphi \in \Delta'$,

implies $T'_{g_1g_2} = T'_{g_2}T'_{g_1}$. Hence, for the remainder, the similar one to the above proof is adapted.

Lemma 5. For each $g \in G$, define the operator U_g on H as follows: $[U_g f]((\varphi, \alpha)) = f((T'_g \varphi, T_g \alpha)) \text{ for all } f \in H.$

Then the mapping $g \rightarrow U_g$ is a faithful unitary representation of G on H.

Proof. Each
$$U_g$$
 is unitary: For each $f \in H$, $||U_g f||^2 = \sum_{(\varphi, \alpha) \in \mathcal{I}} |[U_g f]((\varphi, \alpha))|^2 = \sum_{(\varphi, \beta) \in \mathcal{I}} |f((T'_g \varphi, T_g \alpha))|^2 = \sum_{(\varphi, \beta) \in \mathcal{I}} |f((\varphi, \beta))|^2 = ||f||^2$,

and so $U_g f \in H$ and U_g is unitary. Further the remainder of the proof is assured by Lemmas 4, 5.

Lemma 6. For each $g \in G$, define a mapping θ_g of M as follows: $V_{(\varphi, \alpha)}^{\theta g} = U_{g^{-1}} V_{(\varphi, \alpha)} U_g$ for all $V_{(\varphi, \alpha)} \in M$.

Then the mapping $g \rightarrow \theta_g$ is a faithful representation of G onto a group of automorphisms of M.

Proof. By the above lemma, we need only to prove that each θ_q is an automorphism of M. Indeed, first noting that

$$T_{g}'(T_{g^{-1}}'\phi)^{\alpha}(\gamma) = (T_{g^{-1}}'\phi)^{\alpha}(T_{g^{-1}}\gamma) = [T_{g^{-1}}'\phi](T_{g^{-1}}\gamma + \alpha) = \phi(T_{g}T_{g^{-1}}\gamma + T_{g}\alpha) = \phi(\gamma + T_{g}\alpha) = \phi^{T_{g}\alpha}(\gamma) \text{ for } \phi \in \Delta' \text{ and } \alpha \in \Delta, \text{ we obtain that for each } f \in H,$$

Hence $U_{g^{-1}}V_{(\varphi, \alpha)}U_g = V_{(T'_{g}\varphi, T_{g}\alpha)}$.

Now the theorem is readily followed from the above lemmas.

The proof of the theorem. By Lemma 6, we see that each θ_g is an automorphism of M conserving M_0 , and hence it is sufficient from Lemma 2 to prove that each θ_g does not keep M_0 elementwise invariant. In fact,

$$V_{(0,\alpha)} = U_{g^{-1}} V_{(0,\alpha)} U_g = V_{(0,T_g\alpha)}$$

implies $(0, \alpha) = (0, T_g \alpha)$, or $\alpha = T_g \alpha$ for all $\alpha \in \mathcal{A}$, and hence g = e.

References

- [1] J. Dixmier: Sous-anneaux abéliens maximaux dans les facteurs de type fini, Ann. Math., **59**, 279-286 (1954).
- [2] F. J. Murray and J. von Neumann: On rings of operators IV, Ann. Math., 44, 716-808 (1943).