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29, On Schlicht Functions. I

By Tetsujiro KAKEHASHI
(Comm. by K. KuNuGI, M.J.A., March 12, 1959)

It is known that w= 1+z is a schlicht (convex) function with
a positive real part for |z|<1, and, when |z|=1, w corresponds to

2
the imaginary axis. Hence, for |2|<]1, (i—l_z) is a schlicht funection

with the cut on the negative real axis. For any real number 2, a
function
[ 1+z
1—
is univalent, and for any pos1t1ve number =0,

[ val o' e

is a schlicht funection with positive real part. For any two real numbers

A, and 2,
[{Hfz +u] +y} +u]

is univalent for |z|<1.
In such a way, we can form a class of schlicht functions which
have a certain type of slits. That is, for any set of real numbers

A1y Azt o+, Ay, and for any positive numbers g, t4,* ¢, t:-1, @ funection
defined by

(1) [---{[{(ifz+i21)2+m}%+fi22]2+-~-+ﬂk-1}%+izk]2

is analytic and univalent for |z|<1, and the values form a region
with a tree-shaped slit.

The chief object of this paper is to give properties of coefficients
obtained by Taylor expansion of such a function.

Let F(z) be denoted by the function (1), we have

+u] l2]<1

Fy(z) = 2 Ok
()= A= )2 ———1+2)= = )2 ————[u(2)]
Fy2)=——+ - )2 +e+id(1-2)"=——70F - )2 Leu(2)]?
(2) R e ,
F2)=——5 [ {1 +2+i2,(1—2) "+ (1 —2)} +
1—2)
+it(1—2)'=———— - )2 [eu(2)]*
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If we put

(3) { oR)=ayF a2t apdt+- .,
F(R)=AP+ A2+ AP2 - - -,

we have

AP =a%y; ap=1, a,=1+12,

AP =2a,(ar+ap); an=1

AP — AP = azo+ 200001+ 20000+

AP — AP = o+ 2agoays 200000+ A+ 200,003 20041

oooooooooooo

n
X &
AP —AP,= 20 MZ QO
m= =m
8,5m0,1,2,0 00

(4)

............

At first we show the next

Theorem. 1. For any set of real numbers A, A5+, any set of
positive numbers py, to,-+ -, and for any k=0,1,2,---, we have

| AP | = 4,
where AP is defined by (2) and (8). The equality is valid only when
k=0.

This theorem can be proved by mathematical inductions. A{®=4
is clear by ap=an=1. And A{P’=4(1+14,) satisfies the theorem, and
a;,,=1-412;, has the positive real part 1.

For a function

o(R)=at a2 +a’+ -
and for any real number 1, we have
Lo(2) +14(1 —2)]* = (ao+12)*+2(ao + 1) (a; — 12)2
+{2(ay+22)ay+ (o, —12)%}% 4+ [ 2( ey + 1)+ 2(a; — 1)y |25+
If we put
F()=———% (1 e [o(2)+22(1 —2)]*?
=A+Ap+A2 4,

Ay=(ay+12)?
A, =2(ag+ 1)+ ay).
Now we assume that, for any real number 4, the real part of «,
is positive and the absolute value of A, is not less than 4. Let, for

any real number 2’ and any positive number g, G(2) be a function
defined by

we have

G(z)—( )2 [{le(2) 1P+ —2 +ir (1 —2)]2

(1 A=y —————[(Bo+Biz+ B2+ - - )+ A —2) ]

=B+ B2+ Byz*+- - -
From the relation

(@ ta@g+a2®+ -« 2+ p(l—2) =B+ Biz+ B2® 4+ - - )%,
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we have
=ag+
BoBi=aa;—p
28,8y Bi=2a0t,+ i+ e
2B,85+2B,B,= 20003+ 20,0,
E Wy 2 aiajr
i+j=n>8 +j=n=>3
J=0,1,2,
and hence

= ) =2a i ayta
Bi=2(bo+ D6t B=2a(1+ 2 o),

where the absolute value of 2(a;+1%4)(@,+«,) is not less than 4, and
a, has a positive real part.

The minimum absolute value of a,+141 is reached by the positive
real part of a,, and when 1’ varies on the real axis, the minimum

absolute value of 14+ J :i is not less than absolute value of 1+—i2—.

o1 MU . 44}

Accordingly, the absolute value of a0<1+ﬁ) is greater than the
(41} ﬂ

real part of @, when £>0, and then, the absolute value of the coef-
ficient B, is greater than 4. It is easily verified that the real part of

B, is positive from B,=+ai+ . Thus, the theorem has been established.

Next, we consider an asymptotic relation of a coefficient A when
#n approaches to infinity.

From the relation ¢,(1)=2 for every positive integer k, the follow-
ing equation
(5) lim (45" —AP)=[¢,(1)]*=4
follows at once from (4). For an arbitrary small positive number e
and a sufficiently large fixed integer n, we can verify

| AP — AP —4(n—my) | < (m—mq)e

from (4), and hence we have

nyo N
Now the following theorem follows at once.
Theorem 2. For any positive integer k=0, we have a follow-

wng asymptotic relation
A(k)

im -—2

n->00 nAng

Remark. This theorem means that, for n sufficiently large, we
have

=r; |r|<1.

2
AP

2
AP
AP

>
AP

<mn; k=0




