35. On the Capacitability of Analytic Sets

By Masanori KISHI Mathematical Institute, Nagoya University (Comm. by K. KUNUGI, M.J.A., April 13, 1959)

1. The results, obtained by Choquet [2], on the capacitability were extended by Aronszajn-Smith [1] and the author [3] as follows. Every analytic set in the τ -dimensional Euclidean space is capacitable with respect to the capacity of order α , where $0 < \alpha < \tau$ [1]. Let, in general, Ω be a locally compact space, every compact subset of which is metrisable and suppose that a positive symmetric kernel function satisfies Frostman's maximum principle. Then every analytic set in Ω , which is contained in a compact set, is capacitable with respect to the capacity defined by admissible measures [3].

This note will communicate some extensions of these results, details of which will be published later.

2. Let Ω be a locally compact separable metric space, and let Φ be a positive symmetric kernel function which satisfies the following two conditions:

1° the continuity principle, that is, the continuity of the restriction of any potential U^{μ} of a positive measure μ to its carrier S_{μ} implies the continuity of U^{μ} in Ω ,

 2° when Ω is non-compact, there exists, for any compact subset K and for any positive number ε , a compact subset $L \supset K$ such that $\Phi(P,Q) < \varepsilon$ in $K \times (\Omega - L)$.

Since Ω is separable, there exists an exhaustion $\{\Omega^{(m)}\}$ $(m=1, 2, \cdots)$ of Ω such that each $\Omega^{(m)}$ is an open set whose closure is compact, $\Omega^{(m)} \subset \Omega^{(m+1)}$ and $\Omega = \bigcup_{m=1}^{\infty} \Omega^{(m)}$. In the following consideration we take an exhaustion $\{\Omega^{(m)}\}$ of Ω and we fix it. We say that a sequence $\{\mu_n\}$ $(n=1, 2, \cdots)$ of positive measures converges vaguely to a positive measure μ when it has the following properties:

(1) it converges vaguely to μ in the ordinary sense,

(2) for each *m*, the sequence $\{\mu_n^{(m)}\}$ of the restrictions of μ_n to $\Omega^{(m)}$ converges vaguely in the ordinary sense to $\mu^{(m)}$ which coincides with μ in $\Omega^{(m)}$

3. Now let μ be a positive measure whose total measure is finite. Every subset of a set, at which U^{μ} is infinite, is called a polar set. We denote by \mathfrak{P} the family of all polar sets. Obviously $E = \bigcup_{n=1}^{\infty} E_n$ is a polar set, if every E_n is a polar set.

For an arbitrary set X we consider the following families \mathfrak{F}_X and

 \mathfrak{G}_x of positive measures:

 $\mathfrak{F}_{x} = \{\mu > 0; U^{\mu} \geq 1 \text{ except } E \in \mathfrak{P} \text{ in } X\}$

 $\mathfrak{G}_{X} = \{\mu > 0; S_{\mu} \subset X, U^{\mu} \leq 1 \text{ in } \Omega\},\$

where the statement, $U^{\mu} \ge 1$ except $E \in \mathfrak{P}$ in X, means that the set $E = \{P \in X; U^{\mu}(P) < 1\}$ belongs to the family \mathfrak{P} . We put

 $f(X) = \inf \mu(\Omega)$ for all $\mu \in \mathfrak{F}_X$

 $g(X) = \sup \mu(X)$ for all $\mu \in \mathfrak{G}_X$;

obviously f and g are increasing set-functions, that is, if $X \subset Y$, then $f(X) \leq f(Y)$ and $g(X) \leq g(Y)$. The inner capacity \mathfrak{F} -cap_i(X) and the outer capacity \mathfrak{F} -cap_i(X) of a set X are defined as follows:

 \mathfrak{F} -cap_i(X) = sup f(K) for all compact sets $K \subset X$

 \mathfrak{F} -cap_e(X)=inf \mathfrak{F}-cap_i(G) for all open sets $G \supset X$.

In these definitions we replace f(K) by g(K) and we define \mathfrak{G} -cap_i(X)and \mathfrak{G} -cap_e(X) of X. We say that a set X is $\mathfrak{F}[\mathfrak{G}]$ -capacitable when \mathfrak{F} -cap_i $(X) = \mathfrak{F}$ -cap_e(X) [\mathfrak{G} -cap_i $(X) = \mathfrak{G}$ -cap_e(X)] and we denote by $\mathfrak{F}[\mathfrak{G}]$ -cap(X) the common value of these two capacities. Every open set is \mathfrak{F} - and \mathfrak{G} -capacitable. Our purpose is to show that every analytic set is \mathfrak{F} -capacitable, and hence we may assume that Ω is of positive \mathfrak{F} -capacity.

4. Relations between capacities defined above are shown in the following theorems.

Theorem 1. For any set X we have

 $\mathfrak{G}-\operatorname{cap}_{i}(X) \leq \mathfrak{F}-\operatorname{cap}_{i}(X)$ and $\mathfrak{G}-\operatorname{cap}_{e}(X) \leq \mathfrak{F}-\operatorname{cap}_{e}(X)$.

Theorem 2. For any set X, \mathfrak{F} -cap_i(X) = 0 is equivalent to \mathfrak{G} -cap_i(X)=0.

This theorem is derived easily from the well-known Evans-Selberg's theorem.

5. Useful theorems in our consideration are the following.

Theorem 3. A set X is of \mathcal{F} -outer capacity zero if and only if it is a polar set.

Theorem 4. For any set X the equality \mathfrak{F} -cap_e(X)=f(X) holds. **Corollary.** Every compact set is \mathfrak{F} -capacitable.

This corollary is shown without two conditions 1° and 2° , stated in 2.

Theorem 5. Suppose that a sequence $\{\mu_n\}$ $(n=1, 2, \cdots)$ of positive measures converges vaguely to a positive measure μ and that the total measures $\mu_n(\Omega)$ are bounded. Then it holds that $U^{\mu} = \lim U^{\mu_n}$ except $E \in \mathfrak{P}$ in Ω .

From Theorems 4 and 5 follows

Theorem 6. Suppose that an increasing sequence $\{X_n\}$ of arbitrary sets converges to a set X. Then it holds that \mathfrak{F} -cap_e(X) = lim \mathfrak{F}-cap_e(X_n).

6. After we have obtained these theorems we apply Choquet's

No. 4]

method to prove

Theorem 7. Every analytic set is F-capacitable.

Corollary. If an analytic set is of G-inner capacity zero, then it is of G-outer capacity zero.

Remark 1. If Φ satisfies Frostman's maximum principle, then \mathfrak{F} -capacity coincides with \mathfrak{F} -capacity.

Remark 2. \mathfrak{F} -cap_e(X) of a set X coincides with the value defined by inf $\mu(\Omega)$ for all positive measures such that $U^{\mu} \geq 1$ everywhere in X.

References

- N. Aronszajn and K. T. Smith: Functional spaces and functional completion, Ann. Inst. Fourier, 6, 125-185 (1956).
- [2] G. Choquet: Theory of capacities, Ann. Inst. Fourier, 5, 131-295 (1955).
- [3] M. Kishi: Capacities of borelian sets and the continuity of potentials, Nagoya Math. Jour., 12, 195-219 (1957).