No. 5]

44. Notes on Uniform Convergence of Trigonometrical Series. I

By Kenji YANO

Mathematical Department, Nara Women's University, Nara (Comm. by Z. SUETUNA, M.J.A., May 7, 1959)

1. In the preceding paper [1] we have studied the uniform convergence of the series

$$\sum_{n=1}^{\infty} \frac{s_n}{n} \sin nt$$

concerning the Riemann summability (R_1) . In this paper we shall treat the cosine-analogue.

Let $\{s_n; n=1, 2, \cdots\}$ be a sequence with real terms, and let

$$s_n^{\gamma} = \sum_{\nu=0}^n A_{n-\nu}^{\gamma-1} s_{\nu} \qquad (-\infty < \gamma < \infty),$$

where $s_0=0$ and $A_n^r = {r+n \choose n}$. The theorem to be proved is as follows:

THEOREM 1. Suppose that 0 < r, 0 < s < 1 (or $s = 1, 2, \cdots$), and $0 < \alpha \le 1$, and that

(1.2)
$$\sum_{\nu=n}^{2n} (|s_{\nu}^{-s}| - s_{\nu}^{-s}) = O(n^{1-s\alpha}),$$

as $n \to \infty$. Then, (I) when $0 < \alpha < 1$ the series

$$(1.3) \qquad \qquad \sum_{n=1}^{\infty} \frac{s_n}{n} \cos nt$$

converges uniformly (on the real axis), and (II) when $\alpha=1$ the series (1.3) converges uniformly if and only if $\sum n^{-1}s_n$ converges.

COROLLARY 1. If

$$\sum_{\nu=n}^{2n} (|s_{\nu}^{-1}| - s_{\nu}^{-1}) = O(1) \qquad (n \to \infty),$$

where $s_n^{-1} = s_n - s_{n-1}$, and if the series in

$$(1.4) g(t) = \sum_{n=1}^{\infty} s_n \sin nt$$

converges boundedly in the interval (δ, π) for any $\delta > 0$, then a necessary and sufficient condition for the convergence of the Caucy integral

$$\int_{-\infty}^{\pi} g(t) \ dt$$

is the convergence of the series $\sum n^{-1}s_n$.

This is a theorem of Izumi [2, 3].

This corollary follows from Theorem 1 with $r=s=\alpha=1$, since the convergence of the series in (1.4) implies $s_n=o(1)$, cf. Zygmund [4,

p. 268], and of course $s_n^1 = o(n)$, and the convergence of (1.5) is equivalent to the existence of

$$\lim_{t\to +0} \sum_{n=1}^{\infty} \frac{s_n}{n} \cos nt$$

by Lemma 1 below.

2. In order to prove Theorem 1 we need some lemmas.

LEMMA 1. Suppose that 0 < r, 0 < s and $0 < \alpha \le 1$. Then the two conditions (1.1) and (1.2) imply the convergence of the series (1.3) in (δ, π) for any $\delta > 0$, and in particular the convergence of

$$(2.1) \qquad \qquad \sum_{n=1}^{\infty} (-1)^n \frac{s_n}{m}.$$

LEMMA 1.1. If $\sum c_n(1-\cos nx)$ is convergent for all x of an interval (α, β) , then $\sum c_n$ is convergent.

This is Theorem 258 in Hardy [5, p. 366].

Proof of Lemma 1. Observe that by Abel's transformation

$$\begin{split} \sum_{\nu=1}^{n} s_{\nu} e^{i\nu u} &= (1 - e^{iu})^{-s} \sum_{\mu=1}^{n} s_{\mu}^{-s} e^{i\mu u} \\ &- (1 - e^{iu})^{-\lceil s \rceil} \sum_{\mu=1}^{n} s_{\mu}^{-s} \sum_{\nu=n+1}^{\infty} A_{\nu-\mu}^{s-\lceil s \rceil - 1} e^{i\nu u} \\ &- \sum_{i=1}^{\lceil s \rceil} s_{n}^{1-j} (1 - e^{iu})^{-j} e^{i(n+1)u}, \end{split}$$

where the second term vanishes when s is integral, and the third term does when 0 < s < 1. Using this identity and repeating the argument in Yano [1], we see that under the assumption in the lemma

$$(2.2) \qquad \qquad \sum_{\nu=1}^{\infty} s_{\nu} \int_{t}^{\pi} e^{i\nu u} du$$

converges in the interval $\delta \leq t \leq \pi$ for every δ such as $0 < \delta < \pi$. Here we do not reproduce the argument. The convergence of (2.2) in (δ, π) implies that of the series

$$\begin{split} \sum_{\nu=1}^{\infty} s_{\nu} \int_{t}^{\pi} \sin \nu u \ du &= -\sum_{\nu=1}^{\infty} (-1)^{\nu} \frac{s_{\nu}}{\nu} [1 - \cos \nu (t+\pi)] \\ &= -\sum_{\nu=1}^{\infty} (-1)^{\nu} \frac{s_{\nu}}{\nu} (1 - \cos \nu x), \ x = t + \pi, \end{split}$$

in $\delta + \pi \le x \le 2\pi$. From this follows the convergence of the series (2.1) by Lemma 1.1, and we get the desired result.

LEMMA 2. Suppose that 0 < r, 0 < s and $0 < \alpha < 1$, then the two conditions (1.1) and (1.2) imply the convergence of the series

In the case $\alpha=1$, this lemma is not true. This is easily seen by taking the sequence $s_0=s_1=0$ and $s_n=1/\log n$ for $n\geq 2$.

LEMMA 2.1. Suppose that 0 < r, 0 < s and $0 < \alpha \le 1$. Then the two conditions (1.1) and (1.2) imply

$$(2.4) s_n^{1+\mu} = o(n^{1+\mu\alpha}) -s < \mu \le r$$

Concerning this lemma, cf. Lemma 2 in Yano [1].

Proof of Lemma 2. If $r \ge 1$ we have $s_n^2 = o(n^{1+\alpha})$ from (2.4) with $\mu = 1$. And if r < 1 (2.4) with $\mu = r$ yields $s_n^{1+r} = o(n^{1+r\alpha})$, and then $s_n^2 = s_n^{1+r+(1-r)} = o(n^{1+r\alpha+(1-r)})$.

Hence, in both cases we get for some δ such as $0 < \delta < 1$,

$$(2.5) s_n^2 = o(n^{1+\delta}).$$

From (2.5) and $s_n^1 = o(n)$ which is (2.2) with $\mu = 0$, it follows

$$\sum_{\nu=n+1}^{n+m} \frac{s_{\nu}}{\nu} = 2 \sum_{\nu=n+1}^{n+m} \frac{s_{\nu}^{2}}{\nu(\nu+1)(\nu+2)} + \frac{s_{n+m}^{2}}{(n+m+1)(n+m+2)} - \frac{s_{n}^{2}}{(n+1)(n+2)} + \frac{s_{n+m}^{1}}{n+m+1} - \frac{s_{n}^{1}}{n+1} = o(1)$$

as $n \to \infty$ for $m=1, 2, \cdots$. This proves the convergence of the series (2.3), and we get the lemma.

Proof of Theorem 1. The proof runs analogously as Theorem 1 in Yano [1], whose proof is essentially based on the estimation of the two expressions

$$\sum_{\nu=1}^n s_{\nu} \int_0^t e^{i\nu u} du \quad \text{and} \quad \sum_{\nu=n+1}^\infty s_{\nu} \int_t^\pi e^{i\nu u} du.$$

Now, if the series (1.3), i.e.,

(2.6)
$$\sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} \cos \nu t$$

converges uniformly (on the real axis), then the series $\sum \nu^{-1} s_{\nu}$ necessarily converges.

Inversely, if $\sum \nu^{-1} s_{\nu}$ converges the uniform convergence of (2.6) is equivalent to that of the series in

(2.7)
$$\sum_{\nu=1}^{\infty} \frac{s_{\nu}}{\nu} (1 - \cos \nu t) = \sum_{\nu=1}^{n} + \sum_{\nu=n+1}^{\infty} = S_n + R_n,$$

where

$$\begin{split} S_n &= \Im \Big(\sum_{\nu=1}^n \mathbf{s}_{\nu} \int_0^t \! e^{i\nu \, u} \, du \Big), \\ R_n &= \Im \Big(- \sum_{\nu=n+1}^\infty \mathbf{s}_{\nu} \int_t^\pi \! e^{i\nu \, u} \, du \Big) + \sum_{n+1}^\infty (-1)^{\nu} \frac{\mathbf{s}_{\nu}}{\nu} - \sum_{n+1}^\infty \frac{\mathbf{s}_{\nu}}{\nu}. \end{split}$$

And, under the conditions in the theorem, the series $\sum (-1)^{\nu} \nu^{-1} s_{\nu}$ converges by Lemma 1, and $\sum \nu^{-1} s_{\nu}$ does by the above assumption. Hence, the uniform convergence of the series in (2.7) is certainly verified by the argument used in loc. cit. [1].

Combining the above result with Lemma 2 we get the theorem.

3. In the case r=0 Theorem 1 is not true, and we can then prove the following theorem quite similarly. Cf. also Theorem 3 in Yano [1].

THEOREM 2. If

$$\sum_{\nu=n}^{2n} |s_{\nu}| = o(n/\log n) \qquad (n \to \infty),$$

and if for some positive s and δ

$$\sum_{\nu=n}^{2n} (|s_{\nu}^{-s}| - s_{\nu}^{-s}) = O(n^{1-\delta}) \qquad (n \to \infty),$$

then the series $\sum n^{-1}s_n \cos nt$ converges uniformly if and only if $\sum n^{-1}s_n$ converges.

Letting s=1 and $n^{-1}s_n=a_n$ in Theorem 3 in Yano [1] and the above Theorem 2, and after some modification we have the following COROLLARY 2. Suppose that

$$\sum_{\nu=n}^{2n} |a_{\nu}| = o(1/\log n),$$

and that for some positive δ

$$\sum_{\nu=n}^{2n} (|\Delta a_{\nu}| - \Delta a_{\nu}) = O(n^{-\delta}),$$

where $\Delta a_n = a_n - a_{n+1}$. Then, (I) the sine series $\sum a_n \sin nt$ converges uniformly, and (II) the cosine series $\sum a_n \cos nt$ converges uniformly if and only if $\sum a_n$ converges.

References

- [1] K. Yano: Notes on Tauberian theorems for Riemann summability, Tôhoku Math. J. (2), 10, 19-31 (1958).
- [2] S. Izumi: Some trigonometrical series III, Jour. Math., 1, 128-136 (1953).
- [3] S. Izumi: Some trigonometrical series XI, Tôhoku Math. J. (2), 6, 73-77 (1954).
- [4] A. Zygmund: Trigonometrical Series, Warszawa-Lwow (1935).
- [5] G. H. Hardy: Divergent Series, Oxford (1949).