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105. A Unique Continuation Theorem of a
Parabolic Differential Equation

By Taira SHIROTA
Osaka University
(Comm. by K. KUNUGI, M.J.A., Oct. 12, 1959)

1. Introduction. Let G be a convex domain of the euclidean
n+1-space R, , (—oo <t< 4 oc0,—co <, <+ o0 (1=1,2, -+ +,7n)), contain-
ing a curve C: {(¢, z,(t))|te [, b]}, where x,(t)eC*[a, b].

Consider real solutions # of an inequality of the following kind:
) [PD g0 TGN | gpf S IED | 1y, )]

ot 0,00 1 0%,
Here ((a,(t, «))) denotes a positive definite, symmetric matrix of real
valued functions a(t, )¢ C*G), and M a constant.

Our purpose in this note is to prove the following theorem for
solutions of (1.1).

Theorem. If w is a solution of (1.1) in the convex domain G and
if for any a>0,

(12) lim max {Iu(t, 2, |%(t, z)

o*u
r>0 |s—2()|=r
tefa,

’

ou
’ ‘t’
ax,;( @)

z—x(t)|*=0
Dl 0x 0 }I @]
then % vanishes identically in the horizontal component.

The method is based upon the ideas of H. O. Cordes [2] and E.

Heinz [3]. The tools used are all elementary, but our proof is some-
what complicated.

2. The Cordes’ transformation. Assuming [a, b]D[—¢, 1+¢]
(e>0), let fi(t) be the positive square root of the matrix A(t)=
(@, 2(@))). Let

x—x(t):fi(t)?ﬁ for te[—e, 1+¢],
then we may assume that for some R, >0,

a) ayut, T)eC*([—e 14¢] X-DRl) (DR1={90| |96| <R},

b) au(t, 0)=d,,

c) there are positive numbers C, and C, such that for any real
vector (£, &z, )

C 38 = Sa,t, Bes,=C 28
From (a), (b) and (¢) we see the following

Lemma 1. For some R,, 1?22<R1 there is a topological transror-
mation from [—e¢, 14¢]XDg, onto [—¢, 1+¢] X Dz,
=9, %), t=t
such that it satisfies the following conditions:
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L 1) %t 0)=0,
oy . % 0T
0%, oy, 0V,0%, 0Y,00,
(Dx,—{0}) and

Wil ¢,
0%,

are continuous over [—e¢, 1+¢]X

0%,
oY,

2~
<clyl, |25
ayjayk

3) aaytl is continuous over [—e¢, 14-¢]X (Dz,—{0}) and ’ay"<C

2;
<C, ‘ Y,
0% ,0%,

<Cly|,

II. for any #:0<|#%|=<R,, there is a suitable polar coordinates (r, ¢,)
such that

0 = 0U ~( 0 , n—1 @
2.1 (6 B)—=p(, Y| — F+—— (&, —,
@) gaut ) =p6 D5+ S et DG
where p(¢, %), »,(t, %) and the operator N satisfy the following con-
ditions:

1. C>p@9N>C, |p(, %) <C,

2. |p@ 9)|<C, lap(t, ) '<C, ‘ ap(lj;,‘y) I<C’ ‘3P(t, ) |<C,

1 —
ot t 2 =, ’
) 3 9a..(t y) oo, w de,de, - - de,-,

where dO, is the usual surface element of the unit sphere,
4. there are two positive numbers C, and C, such that
. n—1 _ ~ — n—1
Cl zl} ﬂza _é. 2 a‘,,(t, y)’]vnr = C2 21 7]3
for any real vector {9,---7,_.},

T 3
a,., aa,,,’ 9o and %o ove continuous and
at = or ©,
la..| <G, laa,,, <C, |_a&1\<c ‘aa" <C,
09,

where the constants C,, C, and C depend only on R, C,, C, and the

derivatives of a,,(t, ) of order <2. (Here we use a finite number of

fixed, suitable systems of polar-coordinates covering the unit sphere.)
To prove the above proposition, we only remark that

X,
Sl w)— : 001%

S, w)“ ‘”"

satisfies the following conditions: for any te[ —¢, 1+e] and Z:0 |3
<R, the function v,(, 7,0), Y1y Yoioos Valts Volo.ors Yoo, DA v, 0, are
all continuous, and for any te[—¢,1+¢] and Z:0< |%| < Ry, v, Vot
and v,,, are continuous, where v(t¢, 7, §) is considered as a function of
t,r, 0. Here and in the proof of the following sections u|, denotes
ou

o

Va(ty r, 01, 621' ‘ "0n—1)_
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Furthermore by the transformation: (¢, %)=(, r, ¢,)—>({, s, ¢,)

=(, y):
J r(e—mo’—l)i:-
s(r)y=re-v
we see the following
Lemma 2. By the transformation (¢, ) — (¢, ¥) with a sufficiently
large m,, the following condition is satisfied: for any weC¥y:|y|=1)
and for any te[ —¢, 14+¢],

11 aa—s f No-0d0, <m, f No-0d0, <0

as well as Conditions I and II.
3. The first inequality. Using the above lemmas, we will deduce

the Heinz’ inequality with respect to (1.1). For this purpose we may
assume that

o o*u ou
L =q(, v)———a,/(t, bz b &)—
o ()=t ) S —au(t, DT b B2
: ou & m—1 0 1
=q(t, )— —| — +- —+— N )u,
9, @) ot <6"r2 r 8r+ r? )u

where q(t, x)(>8>0)eC'(t, 7, ¢,), a,,(t, x)eC(t, %), b(t, x)eC°(t, a) and
the coefficients of NeC'(t, r,¢,) (0<r=<R) for fixed, suitable polar
coordinates (r, ¢,) of x.

Furthermore we may assume that w satisfies the condition (1.2)
with «,(t)=0 for te[—e¢, 14+¢].
Put D, x,={t®)|0=t=1 and [z|=7r,AK, "t} and let ¢, ((t, ) be
such that: (1) it is in C*(D,, x,—{0}), (2) its carrier is contained in
D,y xy ) vy, x,=1 in D4, 2x,—{0} and (4) v=u ¥, «, also satisfies the
condition (1.2).

Furthermore let f be a monotone decreasing, smooth function
such that

fH)=1 for tg—g_, f®)>0 for t<1 and f(1)=0.

Let a(t)=af({t)+(n—2). Finally let ¢(f) be a monotone increasing,
smooth function such that

pt)y=t for té%, ot)y=1 for t=

|

and let @,(t)=¢(t)*e*. Then we see the following
Lemma 3. For sufficiently small r, and sufficiently large K, and
k there is a constant «, such that for any a>a,,
a’kK, |v 2“0, (t)dxdt
(3.2) f”’f‘(”KO
= [[ L@ bdndi+ak, [|ofrobis
t=
Dry

Drg,K

1
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where K,, K,, K, are constant numbers depending only the derivatives
with respeet to ¢, », and ¢,, of ¢ of order <1, the derivatives with
respect to t, r of the coefficients of N, and f of order<1, which are in-
dependent of systems of polar-coordinates {¢,}. (Here and in the follow-
ing proofs we denote such constants by K.)

(Outline of the proof). By the usual limit processes [1, 2] we
may assume that the coefficients of L, and v are sufficiently smooth.

Let ,B(t)=%(a(t)-—n+2) and u=7*"z. Then we see that

[ 1L pre- oo, ezt
(3.3
Zf/f{lq”'zzn|2+|L**z|2+2L*Z'L**z—2ﬂ”2z”-q.(L*z+L**z)},
7 '0,(t)dO,drdt,
where

L*z=fr(rz,,),,+Nz+{a’2_ (2-2)2 —qu f,2(t) r? log 'rjz,

L**z=arz,,.

From ¢’>0 it implies that for any K there is a number %, such that
for k>k,

(g0.),—K(g®,) = %(q@a)n .

Therefore by partial integrations with respect to ¢ and » and from III
in §2 and the relation f'<0, it follows that

83) = f f f{’rsq@a(z,t)z+azr¢a(z,,)2—2(a—2)7'2q@,,z,r-z,L
+27%(q9.) .2/, 21— 1%(0D.) . (21,)* — a K 37*(9D.),,2°}d O, drdt

— oK, f f [r0.-2*d0.drdt

+fff{~amoq),,-z-Mz—l—r(qd)a)lz-Mz-l—rq@az-M,tz}dOldfrdt

+ff{q’r¢a'z'/r(rzl*r)l'r+27(q@a)z2_7‘3(q@a)lrz'zlf

2
+(¢92.),,r*2*—rq®, -z- Mz+1rq®,- ‘LT(Z—_&){ 2t

—ar®, K, 2 2}d01dr

t=1¢

Furthermore we note that for sufficiently small 7, for sufficiently
large K, and k, there is a number «, such that for any a>a,

(3.4), a®,—|7(q0.).] =0,

(3.4), mea®,—|r(q®.),, | —rq®.K=0.

From (3.4),, (3.4), and II in §2, it follows that

33) =K'k f f f r220,d0, drdt— Ka* f f 20,40, dr

t=1
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which implies (3.1).

4., The second inequality. Let », and K, be fixed numbers such
that for sufficiently large k& and « (8.2) is valid.

Then using the relation: f(1)=0, f(¢)>0 for t<1 and ¢(t)=1 for

we see that even if f |v|2dwl %0, there is an interval [¢, d]
t=1

(—:12— <e<d< 1> such that for any k& and for any a (>ay(k, %))

f |v|27'““"’@a(t)dx‘ =f Ivlzr“““’@a(t)dxl (tele, d]).
t=1 3
Therefore from (8.2) it follows that for sufficiently large k there is a
constant K, and «, such that for a>a,
@D Kk f f |0 [2r- 00 () dwdt < f f | Ly(0) |27 <00, (t)ddt.

Then from (3.1), (4.1) and (8.4), we see the following
Lemma 4. For sufficiently small 7, and for sufficiently large K,
and k>k, there are constants K, and «, such that for a>a,

| [ (‘L:‘v|2+|v,xi|2>¢2-a<wq>a(t)dxdt
73
<k K, f | Ly(0) |22 <0 @ () dusdt,

where k, depends on u# and K.
5. The proof of Theorem. In this section we use the notations
in §1 and §2. By (1.1) we may assume that for some 7, ¢

6.1 |L1(u)|gM{|u|+§"g|gyi|} for te[—e 1+c] and r=r,
1 .

(4.2)

where 2Kofro<% .

Then from Lemma 4 we see that for any a(>ay(K, 7y, k))

(1w "+, [)r*- 0 dydt

Dry/2,2K
<k 3K [ [ L) pre-<oo.dydt
fi{;vKO
<k K f f | Ly(0) |r2- <00, dydt

Drg,Ko—Pro/2,2K,

+k*K-M (1w P+ uyy, [B)rE-=Co dydt.
Yi
D’0/2,2K0

Accordingly choosing k sufficiently large such that

2K-M<k?,
it follows that for any a>a«a,
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%( ;‘]{0)2-0‘_(7‘-»2)‘[[ {lu 4w, |t dydt

1 s25¢,rsr0/3K)
2-a-(n-2
(e[ o
t22K0.r0:Dro,Ko“Dro/2,2KO
) ol e

0
t<2K000: Prg, Ko~ Pro/2,2K

Therefore tending a— o, we see that
u(t, y)=0 for te[%,_g-], r < r./3K,.

Since, in the above proof, the numbers {e, —}} and % may be re-

placed by arbitrary small and large numbers respectively, we see that
u(t, x)=0 in a neighbourhood of C in (a,b)XR,. Then by a topo-
logical argument and from Lemma 1 and Lemma 4 also, we see that
u(t, £)=0 in the horizontal component stated in §1.

Another detailed proof of Theorem and the results in my pre-
vious paper [4] with other consequences will be published in the
Osaka Mathematical Journal next year.
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