128. A Remark on a Theorem of J. P. Serre

By Yoshio Umeda
Mathematical Institute, Nagoya University
(Comm. by K. Kunugi, m.J.A., Nov. 12, 1959)

1. The purpose of this note is to prove the following

Theorem. Let p be an odd prime, and let X be an arcwise- and simply-connected topological space satisfying
i) $H_{i}(X, Z)$ is finitely generated for all $i>0$,
ii) $H_{i}\left(X, Z_{p}\right)=0$ for all sufficiently large i,
iii) $H_{i}\left(X, Z_{p}\right) \neq 0$ for some $i>0$.

Then there exist infinitely many values of i such that $\pi_{i}(X)$ has a subgroup isomorphic to Z or Z_{p}.

If we apply this theorem to $X=S^{n}$, a sphere of dimension $n \geq 2$, we obtain the result that for each S^{n} there exist infinitely many values of i such that the p-component of $\pi_{i}\left(S^{n}\right)$ is not zero and thus solve affirmatively Problem 12 of W. S. Massey. ${ }^{1)}$

The above theorem was proved by J. P. Serre in the case $p=2 .{ }^{2)}$ Our method of proof is a modification of that of Serre by using the results on $H_{*}\left(\pi, n ; Z_{p}\right)$ due to H. Cartan. ${ }^{3)}$

Throughout this note p is assumed to denote an odd prime.
2. Lemma. Let $n \geq 1$, and let π be a finitely generated abelian group. Then
i) $\vartheta(\pi, n ; t)=\sum_{i=0}^{\infty}\left(\operatorname{dim} H_{i}\left(\pi, n ; Z_{p}\right)\right) t^{i}$ converges in the disk $|t|<1$.
ii) Setting

$$
\varphi(\pi, n ; x)=\log _{p}\left(\vartheta\left(\pi, n ; 1-p^{-x}\right)\right) \quad \text { for } 0 \leq x<+\infty
$$

we have the following valuations. $\left(f(x) \sim g(x)\right.$ means $\lim _{x \rightarrow+\infty} f(x) / g(x)=1$.)

$$
\varphi\left(Z_{p f}, n ; x\right) \sim x^{n} / n!, \quad \varphi(Z, n ; x) \sim\left\{\begin{array}{l}
x^{n-1} /(n-1)!\text { for } n \geq 2, \\
\log _{p} 2 \quad \text { for } n=1,
\end{array}\right.
$$

$\varphi\left(Z_{q^{f}}, n ; x\right)=0$, where q^{f} is a power of a prime $q(\neq p)$.
Proof of Lemma. We prove i) first. By the Künneth's relation $\vartheta\left(\pi+\pi^{\prime}, n ; t\right)=\vartheta(\pi, n ; t) \vartheta\left(\pi^{\prime}, n ; t\right)$ for any finitely generated abelian groups π and π^{\prime}, it suffices to prove i) when $\pi=Z_{p^{f}}$ or Z or $Z_{q} f$, where p^{f} and q^{f} mean the same as in ii). The case $\pi=Z_{q^{f}}$ is trivial, since $\vartheta\left(Z_{q^{f}}, n ; t\right)=1$. The following expression (1) of $\vartheta\left(Z_{p^{f}}, n ; t\right)$ is

1) W. S. Massey: Some problems in algebraic topology and the theory of fibre bundles, Ann. Math., 62, 327-359 (1955).

According to this article, Problem 12 was also solved affirmatively by I. M. James.
2) J. P. Serre: Cohomologie modulo 2 des complexes d'Eilenberg-MacLane, Comment. Math. Helv., 27, 198-232, Theorem 10 (1953).
3) H. Cartan: Séminaire H. Cartan, E. N. S., 1954-1955.
easily set up. ${ }^{4)}$

The right hand side of (1) is to be regarded as the product of the two obvious formal power series

$$
\begin{aligned}
& \vartheta_{1}\left(Z_{p} f, n ; t\right)=\prod_{n()=n, h_{1}+u_{1} \geq 1} 1 /\left(1-t^{d\left(2 h_{1}\right.} \begin{array}{ccc}
\substack{\prime 2 \\
u_{1} \\
u_{1} \\
u_{2} \\
u_{2} \\
u_{3} \\
u_{3} \cdots \cdots}
\end{array}\right) \quad \text { and } \\
& \vartheta_{2}\left(Z_{p^{\prime}}, n ; t\right)=\prod_{n()=n, h_{1} \text { odd }}\left(1+t^{d}\left(\begin{array}{cc}
h_{1} & 2 h_{1} \\
u_{1} & u_{2} \\
u_{2} & u_{3} \cdots
\end{array}\right),\right.
\end{aligned}
$$

both power series being obtained by expanding formally the infinite product over all the indicated matrices, in which h_{1}^{\prime} and h_{i} are nonnegative integers for all $i \geq 1$, and $u_{i}=0$ or 1 for all $i \geq 1$. (Here the notations $d\left(\begin{array}{ccc}h_{1} & 2 h_{2} & 2 h_{3} \cdots \\ u_{1} & u_{2} & u_{3} \cdots\end{array}\right)$ and $h\left(\begin{array}{ccc}h_{1} & 2 h_{2} & 2 h_{3} \cdots \\ u_{1} & u_{2} & u_{3} \cdots\end{array}\right)$ denote the integers $h_{1}+2 h_{2} p+2 h_{3} p^{2}+\cdots+u_{1} \cdot 2+u_{2} \cdot 2 p+u_{3} \cdot 2 p^{2}+\cdots$ and $h_{1}+2 h_{2}+2 h_{3}+\cdots$ $+u_{1}+u_{2}+u_{3}+\cdots$, respectively. The latter is abbreviated as $h()$ when there is no confusion.) Since $\sum_{n()=n} t^{a}\left(\begin{array}{ll}h_{1} & 2 h_{1} \\ u_{1} & u_{2} \\ u_{2} & u_{3} \cdots \cdots\end{array}\right) \leq\left(\sum_{i=1}^{\infty} t^{i}\right)^{n}$ for $0 \leq t<1$, $\vartheta_{1}\left(Z_{p^{f}}, n ; t\right)$ and $\vartheta_{2}\left(Z_{p^{f}}, n ; t\right)$ converge in $0 \leq t<1$. Therefore, $\vartheta\left(Z_{p^{f}}, n ; t\right)$ converges, and (1) holds for $0 \leq t<1$.

The corresponding expression of $\vartheta(Z, n ; t)$ is obtained from (1) by excluding from the right hand side of (1) the factors corresponding to the matrices of the second kind. (A matrix $\left(\begin{array}{lll}h_{1} & 2 h_{2} & 2 h_{3} \\ u_{1} & u_{2} & u_{3}\end{array}\right]$) will be called to be " of the second kind", if $u_{s}=1$ for some s and $u_{i}=h_{i}=0$ for all $i>s$.) Therefore, $\vartheta(Z, n ; t)$ converges in the disk $|t|<1$ by the above inequality, and the corresponding formula for $\vartheta(Z, n ; t)$ holds for $0 \leq t<1$.

We prove ii) now. We begin with the case $\pi=Z_{p}$. Setting
we have the following relations.

$$
\begin{gather*}
\vartheta^{\circ}(n ; t)=\vartheta_{1}\left(Z_{p^{f}}, n ; t\right) \vartheta^{\circ}\left(n ; t^{p}\right) \quad \text { for } n \geq 1 . \tag{2}\\
\vartheta^{\circ}\left(n-1 ; t^{p}\right) \vartheta^{\circ}(n-2 ; t) \geq \vartheta_{1}\left(Z_{p^{f}}, n ; t\right) \geq \vartheta^{\circ}\left(n-1 ; t^{p^{2}}\right) \\
\times \vartheta^{\circ}\left(n-2 ; t^{p}\right) \quad \text { for } n \geq 2, \tag{3}
\end{gather*}
$$

where $\vartheta^{\circ}(0 ; t)=1 /\left(1-t^{2}\right)$ and $\vartheta^{\circ}\left(0 ; t^{p}\right)=1$. Setting further

$$
\begin{aligned}
\varphi_{1}\left(Z_{p^{f}}, n ; x\right) & =\log _{p}\left(\vartheta_{1}\left(Z_{p^{f}}, n ; 1-p^{-x}\right)\right) \quad \text { for } 0 \leq x<+\infty, \\
\varphi^{\circ}(n ; x) & =\log _{p}\left(\vartheta^{\circ}\left(n ; 1-p^{-x}\right)\right) \quad \text { for } 0 \leq x<+\infty,
\end{aligned}
$$

we rewrite (2) and (3) as follows:

$$
\begin{equation*}
\varphi^{\circ}(n ; x)=\varphi_{1}\left(Z_{p^{f}}, n ; x\right)+\varphi^{\circ}\left(n ; x-1-\log _{p}\left(1-p^{-1-x}\left(\binom{p}{2}\right.\right.\right. \tag{2}
\end{equation*}
$$

$$
\left.\left.\left.-\binom{p}{3} p^{-x}+\cdots-p^{-(p-2) x}\right)\right)\right),
$$

4) Cf. H. Cartan 3) Exposé 9.
$(3)^{\prime} \quad \geq \varphi^{\circ}\left(n-1 ; x-2-\log _{p}\left(1-\binom{p^{2}}{2} p^{-x-2}+\binom{p^{2}}{3} p^{-2 x-2}-\cdots\right.\right.$
$\left.\left.\quad+p^{-\left(p^{2}-1\right) x-2}\right)\right)+\varphi^{\circ}\left(n-2 ; x-1-\log _{p}()\right)$,

$$
\left.\left.+p^{-\left(p^{2}-1\right) x-2}\right)\right)+\varphi^{\circ}\left(n-2 ; x-1-\log _{p}()\right)
$$

where $\binom{m}{n}=m!/ n!(m-n)!$ and $\log _{p}()=\log _{p}\left(1-p^{-1-x}\left(\binom{p}{2}-\binom{p}{3} p^{-x}\right.\right.$ $\left.\left.+\cdots-p^{-(p-2) x}\right)\right)$. In case $n=2, \varphi^{\circ}(0 ; x)$ and $\varphi^{\circ}\left(0 ; x-1-\log _{p}()\right)$ in (3)' are to be replaced by $x-\log _{p}\left(2-p^{-x}\right)$ and 0 , respectively. By an argument of Serre 5 it now follows from (2)' that $\varphi_{1}\left(Z_{p^{f}}, n ; x\right) \sim x^{n} / n$! implies $\varphi^{\circ}(n ; x) \sim x^{n+1} /(n+1)$! for $n \geq 1$. It is also clear from (3)' that $\varphi^{\circ}(s ; x) \sim x^{s+1} /(s+1)$! for $s \leq n$ implies $\varphi_{1}\left(Z_{p^{f}}, n+1 ; x\right) \sim x^{n+1} /(n+1)$!. Therefore, we obtain by induction on n that $\varphi_{1}\left(Z_{p^{f}}, n ; x\right) \sim x^{n} / n$! for $n \geq 1$.

We now turn to $\vartheta_{2}\left(Z_{p f}, n ; t\right)$. Setting

$$
\vartheta^{\prime}(n ; t)=\prod_{n()=n}\left(1+t^{i\left(\begin{array}{l}
2 h_{1} \\
u_{1} \\
u_{2}
\end{array} h_{2} \cdots\right.}\right) \quad \text { for } 0 \leq t<1
$$

we have the following relations.

$$
\begin{equation*}
\vartheta_{2}\left(Z_{p^{f}}, n ; t\right) \leq \vartheta^{\prime}(n-1 ; t) \quad \text { for } n \geq 2, \tag{4}
\end{equation*}
$$

(5) $\quad \vartheta^{\prime}(n ; t) \leq \vartheta^{\prime}(n-2 ; t) \vartheta^{\prime}\left(n-1 ; t^{p}\right) \vartheta^{\prime}\left(n ; t^{p}\right) \quad$ for $n \geq 2$,
where $\vartheta^{\prime}(0 ; t)=1+t^{2}$.
Setting further

$$
\begin{aligned}
\varphi_{2}\left(Z_{p^{f}}, n ; x\right) & =\log _{p}\left(\vartheta_{2}\left(Z_{p^{f}}, n ; 1-p^{-x}\right)\right) \quad \text { for } 0 \leq x<+\infty, \\
\varphi^{\prime}(n ; x) & =\log _{p}\left(\vartheta^{\prime}\left(n ; 1-p^{-x}\right)\right) \quad \text { for } 0 \leq x<+\infty,
\end{aligned}
$$

we rewrite (4) and (5) as follows:

$$
\begin{gather*}
\varphi_{2}\left(Z_{p^{f}}, n ; x\right) \leq \varphi^{\prime}(n-1 ; x) \tag{4}\\
\varphi^{\prime}(n ; x) \leq \varphi^{\prime}(n-2 ; x)+\varphi^{\prime}\left(n-1 ; x-1-\log _{p}()\right) \\
+\varphi^{\prime}\left(n ; x-1-\log _{p}()\right)
\end{gather*}
$$

where $\log _{p}()=\log _{p}\left(1-p^{-1-x}\left(\binom{p}{2}-\binom{p}{3} p^{-x}+\cdots-p^{-(p-2) x}\right)\right) . \quad$ By the above-mentioned argument of Serre it now follows from (5)' that, given any $\varepsilon>0$,

$$
\varphi^{\prime}(n ; x) / \frac{x^{n}}{n!} \leq 1+\varepsilon \quad \text { for all sufficiently large } x
$$

(The proof is by induction on n.) Together with (4)' and the valuation $\varphi_{1}\left(Z_{p} f, n ; x\right) \sim x^{n} / n$! for $n \geq 1$, this completes the proof of ii), in case $\pi=Z_{p}$.

In case $\pi=Z(n \geq 3)$, the proof is entirely analogous to the above and proceeds as follows. We first exclude from $\vartheta_{1}\left(Z_{p^{f}}, n ; t\right), \vartheta_{2}\left(Z_{p^{f}}, n ; t\right)$, $\vartheta^{\circ}(n ; t)$ and $\vartheta^{\prime}(n ; t)$ the factors corresponding to the matrices of the second kind, and we denote them by $\vartheta_{1}(Z, n ; t), \vartheta_{2}(Z, n ; t), \vartheta^{\circ}(Z, n ; t)$ and $\vartheta^{\prime}(Z, n ; t)$, respectively. If, in each of the relations (2), (3), (4),
5) Cf. J. P. Serre 2), $\S 3,22^{\circ}$.
and (5), we replace $\vartheta_{1}\left(Z_{p} f, n ; t\right)$, etc. by $\vartheta_{1}(Z, n ; t)$, etc., respectively, then the resulting relations still hold, and from these the desired conclusion follows by the same argument as in the case $\pi=Z_{p}$. For $n=1$ or 2 the proof is direct. The proof of the lemma is now complete.
3. If, in the original proof of Serre, ${ }^{6)}$ we replace Z_{2} by Z_{p} and use the above lemma instead of the corresponding one, then it applies to our theorem, and the theorem is established.

