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126. On Egquivalence of Modular Function Spaces

By Jyun IsHII
Mathematical Department, Hokkaidd University, Sapporo
(Comm. by K. KUNUGI, M.J.A., Nov. 12, 1959)

Let 2 be an abstract space and ¢ be a totally additive measure

defined on a totally additive set class B of subsets of £ satisfying
E=0.

#(HE)<oo

Let @(¢, w) (6=0, we) be a function satisfying the following
conditions:

1) 0=<0(, w)< for all £=0, we;

2) @(& w) is a measurable function on 2 for all £=0;

3) @(,w) is a non-decreasing convex functions of £=0 for all
we;

4) &0, )=0 for all we;

5) O(a—0,w)=9a,w) for all we;

6) O, w)—>x as £->o for all we;

7) for any wef, there exists a,>0 such that &(a,, )< co.

For any measurable function z(w) (weR), O(] x(w)|, @) is also
measurable. We shall denote by L,(2) the class of all measurable
functions #(w) (we2) such that, for some a=a,>0,

f D(a | 1(0)], 0)dpw)< 0o

We write 2>y (x,yeL,), if 2(w)=y(w) for a.e”’ on 2, then L,
is a universally continuous semi-ordered linear space.
If we define a functional

mo(@)= [0(|a()], o),

m, satisfies all the modular conditions and furthermore m, is monotone
complete. Such a space L, with m, is said to be a modular function
space.”’

If &y, w) (=0, we) is, for every fixed we R, the complementary

function of @ in the sense of H. W. Young, @ satisfies all the cor-
responding properties from 1) to 7) on &, and so, we have also a

1) For the integration, refer, for instance, H. Nakano [4].

2) Here ‘“a.e. (almost everywhere)’’ means always that ‘‘except on some A€B
which u(E nA)=0 for all w(E)<oo”.

8) Modulared function spaces were defined and discussed in H. Nakano [2, Ap-
pendices I, II]. For all other definitions and notations used in this note, see the same
book, too.
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modular function space Lz with mz, which is isometric to the conjugate
modular space of L, with m,.

For two functions @ and ¥ on Q satisfying above the conditions,
we say that L, is equivalent to Ly, if L,=L,.

In this note, we find a necessary and sufficient condition in order
that a modular function space is equivalent to the other. Immediate
consequence of the fact gives the condition in order that a modular
function space is equivalent to an Orlicz space.

Lemma.® Let R be an abstract modular space with two modulars
m; and m, and m,; be monotone complete.

(I) There exist ¢, ¢, k, K, y>0 such that

(a) my(ka) <7y for all x with m(x)<e
(b) my(kx) < Km,(x)  for all x with & =m,(x)<e.

(II) If R is nonm-atomic, there exist ¢, k, K >0 such that

my(ka) < Km,(x) for all = with m,(x)=e.

Proof. (I). (a) If (a) is not valid, there exists a sequence
0=x,eR (v=1, 2,-- ) such that ml(oc,)g-;—v, m2<—1— x,)g». Let y,= le,
y =

(n=1,2,...), then 0=y,4s., and m(y,)<1 (n=1,2,---). Therefore

there exists y,= [j Y,, because m, is monotone complete. On the other
n=1
hand, for v=1,2,--: m2<-1—yo>gm2(-}— y,,)gn for n=>y,
Y Y

which contradicts that m, is a modular.

(b) For any z with %éml(x)<s, we have mz(kx)grg%r—ml(x)
by (a).
(IT) Let ¢ be the same as in (I). If m,(x)>=e, there exists an

integer n such that en<m,(x)<e(n+1). We can decompose « into an

orthogonal sequence xz, (»=1,2,.--, n+1) such that
n+1

r=> Pz, and m,(x,)<e,

y=1

because R is non-atomic. Therefore
m(he)= 3 mallea,) < 20y < 2 m,(z)
= 3

by () in (I).

First, we consider only the case that ¢ is non-atomic.

Theorem 1. L,(2)S L,(2) if and only if there exist k, K >0
and c(w)e L (9Q) such that
(=) U(ké, 0)=KO(§, 0)+c(w)
Sor all £=0 and a.e. on 2.

4) The proof of this lemma has relations to results of [1] and [6].
5) This theorem is a generalization of Theorem la in [5, Chap. II, §1].
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Proof. It is clear that (x) implies L, = L,. We prove the con-
verse. Let 0=<a, (v=1,2,---) be the system of all the positive rational
numbers. For any Ee¢®B with y(E)<  and for ¢ k, K >0 in (II), we
put, for v=1,2,-.-.

(%) E,={w; V(ka,, 0)>Kda,, o)} E
and
r(0)=a,)z,(®)

respectively, where yz, is the characteristic function of E,.
We need to consider only on such v that #(£,)=3=0 in the following.
Since @(a,, w)< oo on E, by (%), we have

E, .={o; ¥(a,, 0)<n} ~EANLE,.
For all n=n, where 7, is sufficiently large such that u(%, ,,)==0, we
have a,xz,,,€L, and my(a.xz,,,)<e, if otherwise, the fact

my(ka,yn, )= f Wk, o)

Eyrp

~K f W, w)dp=Km,(a.1z,,,)

Hysn

contradicts (II).
Therefore, considering a,yz,, tn-: and my(a.xz,,,)<¢, we have z,=

[jla,xmmeLa, and m(x,)<e likewise by () and (II). Here, putting

¥,= Ux,, we have a sequence of step functions 0=<<y,43., where y,=

v=1

>, g for a, <a,,<---<a, with v,=p¢ (¢=1,2,---, %) and for the
P 1 n
st

system of disjoint sets K= Evﬂ_(ﬂol Eu,,)f\ E,,
o=1
Since, for all n=1,2,---

mo ()= [ F(k 3 (o), o )i
Q2

=3 [Vka,,, 0)dp>31 [ k0, 0)dp

r=1
B® B

=Kf@(§l a, xae(w), w)d/«l—‘:Kma;(?/n),
2

we have m,(y,)<e by (a) and (II).
Therefore yz= U ¥,.€ L, because m, is monotone complete, and further-
n=1

more m,(yz)<e. Namely yycL, by the hypothesis and m,(ky,)<r
by (a) in (I).
Now, we have, for all n=1,2,...
V(ka,, o) é{ U(ky p(w), ») for all weE,
Ko(a,, ») for all we E—E, E.
The system {y;} in which every ¥, is determined depending on EeB
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with p#(E)< o by the above-stated way constitutes a directed system

0=yztcm<s because for any two elements ¥z yrc<{yz} we have

HEUF)<o and yzUYr=Ysr Since m(yz)=e for any m(E)< o,

and Et,z<.? there exists y,= al& Yz€L, with m,(y,)<e which is
W(B<oo

defined for all on 2, and so, y,¢ Ly and my(ky,)<7y by the same reason
stated above.

Thus, we have for all positive real numbers £=0

U(ke, 0) KO, 0)+¥(kyw), ) for ae. on 2

by 5). ¥(ky,w), ») is no other than c(w) in ().

Corollary 1. L, is equivalent to L, if and only if there exist
ki, ks, K, K, >0 and ceL, such that

| K, O(k,&, 0)— K,0(k.¢, o) | <c(w)

Jor all £=0 and a.e. on Q.

Corollary 2. (1) Let Ly, (R) be an Orlicz space defined on 2
by a function M(E) (6=0).

L, =L, if and only if there exist k, K>0 and c(w)eL (2)
such that

O(ké, 0)<KM(8)+c(w)

Sfor all £=0 and a.e. on 2.

(2) Let L,.(R2) be a modular function space which is of unique
spectra® defined on 2 by a measurable function 1<plw)<oo (we2).

L,<L,., if and only if there exist k, K >0 and ce L, such that

O(kt, 0) <K& +c(w)

Jor all £=0 and a.e. on 2.

Next, we consider the case that g is atomie.

If p is atomiec, we can assume u(w)=1 for all we®2 without loss
of generality. And m,(x)= %@qx(w)l, o) for all xeL,.

Theortem 2. L, L, if and only if there exist k, K >0, ¢(w)=0
(we Q) with %0((o)<oo and &, (weR) which is a system of numbers
satisfying, for any xecL, with m,(x)< oo, |2(w)|<E, except on some
finite subset of Q, such that
(%) U(ks, 0)<KO(§, w)+c(w)

Jor all £<¢, and wef.
Proof. 1If (xx) is valid, for any x¢L,, since there exists a>0

6) These spaces were defined and discussed precisely in H. Nakano [3, §89],
that is,

chmy(ﬁ)r-{x: f | wa(w) |[Pdu<co  for some ac:aex>0}
2
with the modular
1
= | — %)
m(x) ‘[ » (w)l 2(w) | "

for a measurable function 1= p(v)=o° on 2,
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with m,(ax)< o, we can find a finite subset FF*C 2 such that a|x(w)|
=¢, for all weF and

U(ka |2(w)|, o) <K0(a|x(w)]|, ®)+c(w)
for all weF.
Furthermore, there exists &’ with 0 <%’ <ak such that ¥'(¥'|2(0)|, 0)<
for all weF, because 0=|z(w)|< o and 7) on ¥.
Thus, we have

S [2(0) | o)
=3 Koa|s@) o)+ 3 o)+ 3 UF |2(@)]0)

L GIES a(0)| <o a|a@) >0
S KX 0(a|x(w)], o) + 3 e(w)+ S UE | 2(w) |, 0)< oo.
0wEQ wE QR wEF
Namely xelL,.
Conversely, if L, & Ly, then (xx) is proved also by the analogous
way to the case which g is non-atomic as the following.
Let 0<a, (v=1,2,--.) be the system of all the positive rational
numbers and let ¢ and ¢ in (I) be 2¢'<e. We put, for all wef,
a,=sup{a; a >0, T(ka, 0)> K (a, w), Va, w)<c'}
and
x(@)= U avtAo)= U U awp. o)
JSEQ FCQ o&F
where every 7, is the characteristic function of {»'} and F is a finite
subset of £, respectively.
Then, because, for any two elements w,, w,€ 2,
M (Ao, Yo, U Xy Yag) =Py, @1) + Py, @) < 26" <&
and
My (Ko, Yo, U QaXos) > EMo(Aa, X0, U o, Xo,)
we have mw(leJFame)<5' by (I).

Since U @uyutrca®, and m, is monotone complete, we have x,6L, and
wEFR

my(x,)<¢’. Namely x,¢L, by the hypothesis and my(kx,)<r by (a)
in (I).
On the other hand, putting

£, = sup §,
O (&, 0056

then for any xe L, with m,(z)= > O(| 2(w) |, )<  we can find a finite
0EQ

subset F,e2 such that &( x(w)|, 0)<¢ for all weF,. Namely |x(o)|
=<¢, for all weF,.
. Thus, we have, for all we®
U (kxo(w), w) for all 0=<¢<a,
(ks “’)é{ KO(E, v) for all a,<E=<¢,
by (b) in (I). Therefore (x*) is proved by putting
(w)=T (kxyw), ®).
Similar conditions to the corollaries to Theorem 1 on the case that
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£ is non-atomic hold also in this case.

Finally, the author wishes to express his hearty gratitude to

Professor Hidegord Nakano for his guidance and frequent encourage-
ment.
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