124. On Singular Perturbation of Linear Partial Differential Equations with Constant Coefficients. II

By Hitoshi Kumano-go
(Comm. by K. Kunugi, m.J.A., Nov. 12, 1959)

§ 0. Introduction. Professor M. Nagumo proved in his recent note ${ }^{1)}$ the following theorem on the stability of linear partial differential equations of the form (0)

$$
L_{\mathrm{s}}(u)=\sum_{\mu=0}^{l} P_{\mu}\left(\partial_{x}, \varepsilon\right) \partial_{t}^{\mu} u=f_{\mathrm{s}}(t, x) .^{2}
$$

Definition. We say that the equation (0) is H_{p}-stable for $\varepsilon \downarrow 0$ in $0 \leqq t \leqq T$ with respect to a particular solution $u=u_{0}(t)$ of (0) for $\varepsilon=0$, if $u_{0}(t) \rightarrow u_{0}(t)$ in $H_{p, x}$ uniformly for $0 \leqq t \leqq T$, whenever $f_{0}(t, x) \rightarrow f_{0}(t, x)$ in $H_{p, x}$ uniformly for $0 \leqq t \leqq T$, and $u_{s}(t)=u(t, x, \varepsilon)$ is a generalized $H_{p}-$ solution of (0) such that $\partial_{t}^{j-1} u_{s}(0) \rightarrow \partial_{t}^{j-1} u_{0}(0)$ in $H_{p, x}(j=1, \cdots, l)$.

Theorem A. Let degree of $\left\{P_{\mu}(\xi, \varepsilon)-P_{\mu}(\xi, 0)\right\} \leqq k(\mu=0, \cdots, l)$ and let $u=u_{0}(t)$ be an l-times continuously $H_{p+k, x^{-}}$differentiable solution of (0) for $\varepsilon=0$ in $0 \leqq t \leqq T$. In order that (0) be H_{p}-stable for $\varepsilon \downarrow 0$ with respect to $u=u_{0}(t)$ in $0 \leqq t \leqq T$, it is necessary and sufficient that there exist constants $\varepsilon_{0}>0$ and C such that:

$$
\operatorname{Sup}_{\xi \in \mathbb{E}^{m}} Y_{j}(t, \xi, \varepsilon) \leqq C \quad \text { for } 0 \leqq t \leqq T, 0<\varepsilon \leqq \varepsilon_{0}
$$

and

$$
\operatorname{Sup}_{\xi \in \mathbb{E}^{m}} \int_{0}^{T}\left|P_{l}(\xi, \varepsilon)^{-1} Y_{l}(t, \xi, \varepsilon)\right| d t \leqq C \quad \text { for } 0<\varepsilon \leqq \varepsilon_{0}
$$

where $Y=Y_{j}(t, \xi, \varepsilon)$ are matricial solutions of

$$
\sum_{\mu=0}^{l} P_{\mu}(i \xi, \varepsilon)(d / d t)^{\mu} y=0
$$

with the initial conditions $\partial_{t}^{k-1} Y_{j}(0, \xi, \varepsilon)=\delta_{j k} 1(k=1, \cdots, l)$.
In this note we are concerned with the H_{p}-stability of the equation

$$
\varepsilon \cdot \partial_{t}^{2} u+a \cdot \partial_{t} u+Q\left(\partial_{x}\right) u=f_{s}(t, x)
$$

where a is a complex constant and $Q(i \xi)$ is a polynomial in $\xi \in E^{m}$, and making use of Theorem A we decide the structure of $Q(i \xi)$ in order that this equation be H_{p}-stable. ${ }^{3)}$

I want to take this opportunity to thank Professor M. Nagumo and Mr. K. Ise for their constant assistance.
§1. Main theorems. In this section we shall exhibit three theorems on H_{p}-stability of the equation

$$
\begin{equation*}
\varepsilon \cdot \partial_{t}^{2} u+a \cdot \partial_{t} u+Q\left(\partial_{x}\right) u=f_{s}(t, x) . \tag{1.1}
\end{equation*}
$$

The fundamental solutions of the equation

$$
\varepsilon\left(d^{2} / d t^{2}\right) y+\alpha(d / d t) y+Q(i \xi) y=0
$$

are represented by

1) M. Nagumo: On singular perturbation of linear partial differential equations with constant coefficients. I, Proc. Japan Acad., 35, 449 (1959).
2) We use the same notations and terminology with Nagumo 1).
3) In this note we say H_{p}-stable for simplicity.

$$
\begin{gather*}
Y_{1}(t, \xi, \varepsilon) \equiv Y_{1}\left[t, \lambda_{1}, \lambda_{2}\right]=1 /\left(\lambda_{2}-\lambda_{1}\right)\left\{\lambda_{2} \exp \left(\lambda_{1} t\right)-\lambda_{1} \exp \left(\lambda_{2} t\right)\right\}, \tag{1.2}\\
Y_{2}(t, \xi, \varepsilon) \equiv Y_{2}\left[t, \lambda_{1}, \lambda_{2}\right]=1 /\left(\lambda_{2}-\lambda_{1}\right)\left\{\exp \left(\lambda_{2} t\right)-\exp \left(\lambda_{1} t\right)\right\}, \tag{1.3}\\
\lambda_{1}=\lambda_{1}(\xi, \varepsilon)=1 / 2 \varepsilon\left\{-a-\sqrt{\left.a^{2}-4 \varepsilon Q(i \xi)\right\}^{4}}\right. \\
\lambda_{2}=\lambda_{2}(\xi, \varepsilon)=1 / 2 \varepsilon\left\{-a+\sqrt{a^{2}-4 \varepsilon Q(i \xi)}\right\} .
\end{gather*}
$$

and
Applying Theorem A to the equation (1.1) we obtain the next
Theorem A^{\prime}. The equation (1.1) is H_{p}-stable, if and only if

$$
\begin{cases}\text { (I) } & \operatorname{Sup}_{\xi \in \mathbb{E}^{m}}\left|Y_{1}(t, \xi, \varepsilon)\right| \leqq C \text { for } 0 \leqq t \leqq T, 0<\varepsilon \leqq \varepsilon_{0}, \tag{1.4}\\ \text { (II) } & \operatorname{Sup}_{\xi \in E^{m}}\left|Y_{2}(t, \xi, \varepsilon)\right| \leqq C \text { for } 0 \leqq t \leqq T, 0<\varepsilon \leqq \varepsilon_{0} \\ \text { (III) } & \operatorname{Sup}_{\xi \in \mathbb{B}^{m}} \int_{0}^{T}\left|\frac{1}{\varepsilon} \cdot Y_{2}(t, \xi, \varepsilon)\right| d t \leqq C \text { for } 0<\varepsilon \leqq \varepsilon_{0}\end{cases}
$$

Making use of these results we shall obtain the following theorems.
Theorem 1. If the equation (1.1) is H_{p}-stable, then the constant a does not vanish and $\operatorname{Re} a^{5)}$ is non-negative.

Theorem 2. Let $\operatorname{Re} a>0$. Then, in order that the equation (1.1) be H_{p}-stable, it is necessary and sufficient that there exist constants C and R such that

$$
\left\{\begin{array}{lll}
(\text { I }) & Q_{1}(\xi)+C>0 & \text { for all } \xi \in E^{m} \tag{1.5}\\
\text { (II }) & Q_{2}^{2}(\xi) \leqq R\left(Q_{1}(\xi)+C\right) & \text { for all } \xi \in E^{m}
\end{array}\right.
$$

where $Q_{1}(\xi)=\operatorname{Re} Q(i \xi)$ and $Q_{2}(\xi)=\operatorname{Im} Q(i \xi)$.
Theorem 3. Let $\operatorname{Re} a=0$ and $\operatorname{Im} a \neq 0$. Then, in order that the equation (1.1) be H_{p}-stable, it is necessary and sufficient that there exist constants C and K such that

$$
\begin{cases}\text { (I) } \quad Q_{2}(\xi)=K ; & \text { for all } \xi \in E^{m} \tag{1.6}\\ \text { (II) } Q_{1}(\xi) \geqq C ; & \text { for all } \xi \in E^{m}\end{cases}
$$

Proof of Theorem 1. i) First we assume $\alpha=0$. We put $\sqrt{-Q\left(i \xi_{0}\right)}$ $=\alpha+\beta i, \alpha \geqq 0$, with a fixed $\xi_{0} \in E^{m}$. Then, for any fixed $t>0$, if $\alpha>0$,

$$
\begin{align*}
& \left|Y_{2}\left(t, \xi_{0}, \varepsilon\right)\right|=\left(1 /\left|\lambda_{2}-\lambda_{1}\right|\right)\left|\left\{\exp \left(\lambda_{2} t\right)-\exp \left(\lambda_{1} t\right)\right\}\right| \tag{1.7}\\
& \quad \geqq(\sqrt{\varepsilon} / 2|\alpha+\beta i|)\{\exp ((\alpha / \sqrt{\varepsilon}) t)-\exp (-(\alpha / \sqrt{\varepsilon}) t)\} \rightarrow \infty \text { as } \varepsilon \downarrow 0,
\end{align*}
$$

and, if $\alpha=0, \beta \neq 0$, or if $\alpha=\beta=0$, we have the next, respectively,

$$
\begin{gather*}
\int_{0}^{T}\left|\frac{1}{\varepsilon} \cdot Y_{2}\left(t, \xi_{0}, \varepsilon\right)\right| d t=\frac{1}{|\beta| \sqrt{\varepsilon}} \int_{0}^{T}\left|\sin \frac{\beta t}{\sqrt{\varepsilon}}\right| d t \rightarrow \infty \quad \text { as } \varepsilon \downarrow 0, \tag{1.8}\\
\int_{0}^{T}\left|\frac{1}{\varepsilon} \cdot Y_{2}\left(t, \xi_{0}, \varepsilon\right)\right| d t=\int_{0}^{T} \frac{t}{\varepsilon} d t \rightarrow \infty \quad \text { as } \varepsilon \downarrow 0 . \tag{1.9}
\end{gather*}
$$

Applying (1.7), (1.8) or (1.9) to Theorem A^{\prime}, we see that for $a=0$ the equation (1.1) can not be H_{p}-stable.
ii) Now we assume $\operatorname{Re} a<0$. Since for a fixed ξ_{0},

$$
\begin{gathered}
\lambda_{1}\left(\xi_{0}, \varepsilon\right)=(1 / 2 \varepsilon)\left\{-a-\sqrt{a^{2}-4 \varepsilon Q\left(i \xi_{0}\right)}\right\}=o(\varepsilon) / \varepsilon \\
\lambda_{2}\left(\xi_{0}, \varepsilon\right)=(1 / 2 \varepsilon)\left\{-a+\sqrt{a^{2}-4 \varepsilon Q\left(i \xi_{0}\right)}\right\}=(1 / \varepsilon)(-a+o(\varepsilon))
\end{gathered}
$$

[^0]and $\left|\lambda_{2}-\lambda_{1}\right|=(1 / \varepsilon)|a+o(\varepsilon)|$, using the assumption $\operatorname{Re} a<0$, we get for sufficiently small $\varepsilon>0$,
$$
\operatorname{Re} \lambda_{1}\left(\xi_{0}, \varepsilon\right) \leqq-(1 / 4 \varepsilon) \operatorname{Re} a, \quad \operatorname{Re} \lambda_{2}\left(\xi_{0}, \varepsilon\right) \geqq-(1 / 2 \varepsilon) \operatorname{Re} a,
$$
and $\quad\left|\lambda_{2}-\lambda_{1}\right| \leqq(2 / \varepsilon)|a|$.
Hence for any fixed $t>0$,
$$
\left|Y_{2}(t, \xi, \varepsilon)\right| \geqq \frac{\varepsilon}{2|a|}\left\{\exp \left(-\frac{1}{2 \varepsilon} \operatorname{Re}(a t)\right)-\exp \left(-\frac{1}{4 \varepsilon} \operatorname{Re}(a t)\right)\right\} \rightarrow \infty \quad \text { as } \varepsilon \downarrow 0
$$
and consequently from Theorem A^{\prime} (1.1) can not be H_{p}-stable.
§2. Lemmas for the proofs of Theorems 2 and 3.
Lemma 1. Let Z be a complex number. Then,
\[

$$
\begin{aligned}
\{\operatorname{Re}(\pm \sqrt{Z})\}^{2} & =\frac{1}{2}\left\{\operatorname{Re} Z+\sqrt{(\operatorname{Re} Z)^{2}+(\operatorname{Im} Z)^{2}}\right\} \\
& =\frac{1}{2} \cdot \frac{(\operatorname{Im} Z)^{2}}{(-\operatorname{Re} Z)+\sqrt{(\operatorname{Re} Z)^{2}+(\operatorname{Im} Z)^{2}}}
\end{aligned}
$$
\]

Especially we have the following equalities which will be used several times. Let a and Q be complex numbers. Then,

$$
\begin{equation*}
\left\{\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon Q}\right)\right\}^{2}=\frac{1}{2}\left\{\left(a_{1}^{2}-a_{2}^{2}-4 \varepsilon Q_{1}\right)+\sqrt{\left(a_{1}^{2}-a_{2}^{2}-4 \varepsilon Q_{1}\right)^{2}+\left(2 a_{1} a_{2}-4 \varepsilon Q_{2}\right)^{2}}\right\} \tag{2.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon Q}\right)\right\}^{2}=\frac{1}{2} \cdot \frac{\left(2 a_{1} a_{2}-4 \varepsilon Q_{2}\right)^{2}}{\left(4 \varepsilon Q_{1}+a_{2}^{2}-a_{1}^{2}\right)+\sqrt{\left(a_{1}^{2}-a_{2}^{2}-4 \varepsilon Q_{1}\right)^{2}+\left(2 a_{1} a_{2}-4 \varepsilon Q_{2}\right)^{2}}} \tag{2.2}
\end{equation*}
$$

where $a_{1}=\operatorname{Re} a, a_{2}=\operatorname{Im} a, Q_{1}=\operatorname{Re} Q$, and $Q_{2}=\operatorname{Im} Q$.
Proof is omitted.
Lemma 2. We put $\lambda(Q, \varepsilon)=(1 / 2 \varepsilon)\left\{-a \pm \sqrt{a^{2}-4 \varepsilon Q}\right\}$ with $a_{1}>0$. Then, for any $R>0$ and $\varepsilon_{0}>0$ there exists a constant C such that
$\operatorname{Re} \lambda(Q, \varepsilon) \leqq C \quad$ for $|Q|=\sqrt{Q_{1}^{2}+Q_{2}^{2}} \leqq R, \quad 0<\varepsilon \leqq \varepsilon_{0}$
where notations are the same with Lemma 1.
Proof. Using $|Q| \leqq R$ and $0<\varepsilon \leqq \varepsilon_{0}$, it follows from (2.1) that with large positive constants C_{1}, C_{2}, and C_{3},
$\left\{\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon Q}\right)\right\}^{2} \leqq(1 / 2)\left\{\left(a_{1}^{2}-a_{2}^{2}-4 \varepsilon Q_{1}\right)+\left(a_{1}^{2}+a_{2}^{2}\right)+C_{2} \cdot \varepsilon\right\} \leqq a_{1}^{2}+C_{3} \cdot \varepsilon$.
As $a_{1}>0$, we get then

$$
\operatorname{Re} \lambda(Q, \varepsilon)=(1 / 2 \varepsilon)\left\{-a_{1}+\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon Q}\right)\right\} \leqq(1 / 2) \cdot C_{3} .
$$

Lemma 3. As another representation of (1.2), we have

$$
\begin{equation*}
Y_{1}\left[t, \lambda_{1}, \lambda_{2}\right]=\int_{0}^{1}\left\{\exp \left(\lambda_{1} t\right)-\left(\lambda_{1} t\right) \exp \left(\lambda_{1}+\theta\left(\lambda_{2}-\lambda_{1}\right)\right) t\right\} d \theta \tag{2.3}
\end{equation*}
$$

Proof. Put $F(z)=Z \exp \left(\lambda_{1} t\right)-\lambda_{1} \exp (Z t)$. Then,

$$
Y_{1}\left[t, \lambda_{1}, \lambda_{2}\right]=\int_{0}^{1}\left(\frac{d}{d z} F\right)_{z=\lambda_{1}+\theta\left(\lambda_{2}-\lambda_{1}\right)}^{d \theta}=\int_{0}^{1}\left\{\exp \left(\lambda_{1} t\right)-\left(\lambda_{1} t\right) \exp (Z t)\right\}_{z=\lambda_{1}+\theta\left(\lambda_{2}-\lambda_{1}\right)}^{d \theta} .
$$

Lemma 4. Put $\lambda=\frac{1}{2 \varepsilon}\left\{-a \pm \sqrt{a^{2}-4 \varepsilon Q}\right\}$.
If there exist constants $\varepsilon_{0}>0, \delta>0$, and R such that for any $\varepsilon\left(0<\varepsilon \leqq \varepsilon_{0}\right)$, $\operatorname{Re} \lambda \leqq R$ and $\left|\sqrt{a^{2}-4 \varepsilon Q}\right| \geqq \delta>0$, then $\left|Y_{1}\left[t, \lambda_{1}, \lambda_{2}\right]\right|$ is bounded.

Proof. Since $\left|\frac{\lambda}{\lambda_{2}-\lambda_{1}}\right| \leqq \frac{1}{2}\left\{\left|\frac{a}{\sqrt{a^{2}-4 \varepsilon Q}}\right|+1\right\}$, and $|\exp (\lambda t)|=\exp (\operatorname{Re}$ -($\lambda t)$), we can easily prove this lemma.

Lemma 5. Let $a \neq 0$ and $\varepsilon_{0}>0$. If $\operatorname{Re} \lambda_{\nu}(\nu=1,2)$ are bounded above for $0<\varepsilon \leqq \varepsilon_{0}$, then, (I) in (1.4) implies (II) and (III) in (1.4).

Proof. It is easy to see that

$$
Y_{1}\left[t, \lambda_{1}, \lambda_{2}\right]=\frac{1}{2}\left\{\exp \left(\lambda_{1} t\right)+\exp \left(\lambda_{2} t\right)+\frac{a}{\varepsilon} \cdot Y_{2}\left[t, \lambda_{1}, \lambda_{2}\right]\right\} .
$$

Then, for $a \neq 0,\left|\frac{1}{\varepsilon} \cdot Y_{2}\left[t, \lambda_{1}, \lambda_{2}\right]\right|$ is bounded, and consequently

$$
\left|Y_{2}\left[t, \lambda_{1}, \lambda_{2}\right]\right| \text { and } \int_{0}^{T}\left|\frac{1}{\varepsilon} \cdot Y_{2}\left[t, \lambda_{1}, \lambda_{2}\right]\right| d t \text { are bounded. }
$$

§3. The proofs of Theorem 2 and Theorem 3. Proof of Theorem 2. Necessity of the conditions (1.5). If (I) of (1.5) did not hold, then there would exist a sequence $\left\{\xi_{\nu}\right\}$ such that $Q_{1}\left(\xi_{\nu}\right\} \rightarrow-\infty$ as $\nu \rightarrow \infty$. We can take a sequence $\left\{\varepsilon_{\nu}\right\}\left(\varepsilon_{\nu}>0\right)$ such that

$$
\begin{equation*}
\varepsilon_{\nu} \cdot Q_{1}\left(\xi_{\nu}\right) \rightarrow-\infty \text { and } \varepsilon_{\nu} \downarrow 0 \quad \text { as } \nu \rightarrow \infty . \tag{3.1}
\end{equation*}
$$

Then, it follows from (2.1) and (3.1) that

$$
\left\{\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon_{\nu} Q\left(i \xi_{\nu}\right)}\right)\right\}^{2} \geqq\left(a_{1}^{2}-a_{2}^{2}-4 \varepsilon_{,} Q_{1}\left(\xi_{\nu}\right)\right) \rightarrow \infty \quad \text { as } \nu \rightarrow \infty .
$$

Then there exists a constant $C>0$ such that for large ν

$$
\begin{align*}
& \operatorname{Re} \lambda_{1}\left(\xi_{\nu}, \varepsilon_{\nu}\right)=\frac{1}{2 \varepsilon_{\nu}}\left\{-a_{1}-\operatorname{Re} \sqrt{a^{2}-4 \varepsilon_{\nu} Q\left(i \xi_{\nu}\right)}\right\} \leqq 0, \\
& \operatorname{Re} \lambda_{2}\left(\xi_{\nu}, \varepsilon_{\nu}\right)=\frac{1}{2 \varepsilon_{\nu}}\left\{-a_{1}+\operatorname{Re} \sqrt{a^{2}-4 \varepsilon_{\nu} Q\left(i \xi_{\nu}\right)}\right\} \geqq \frac{1}{\varepsilon_{\nu}} \cdot C . \tag{3.2}
\end{align*}
$$

And, as $\left|\sqrt{a^{2}-4 \varepsilon_{\nu} Q\left(i \xi_{\nu}\right)}\right| \geqq\left|\operatorname{Re} \sqrt{a^{2}-4 \varepsilon_{\nu} Q\left(i \xi_{\nu}\right)}\right| \rightarrow \infty$ for $\nu \rightarrow \infty$, we have

$$
\begin{equation*}
\left|\frac{\lambda}{\lambda_{2}-\lambda_{1}}\right|=\frac{1}{2}(o(\nu)+1) . \tag{3.3}
\end{equation*}
$$

Applying (3.2) and (3.3) to (1.2) we get

$$
\left|Y_{1}\left(t, \xi_{\nu}, \varepsilon_{\nu}\right)\right| \rightarrow \infty \quad \text { as } \nu \rightarrow \infty \quad \text { for any fixed } t>0
$$

Then condition (I) of (1.5) is thus necessary.
Now assume that (I) of (1.5) holds, but that (II) of (1.5) did not hold, then there would exist a sequence such that

$$
\begin{equation*}
Q_{2}^{2}\left(\xi_{\nu}\right) \geqq \nu \cdot\left|Q_{1}\left(\xi_{\nu}\right)\right| \text { and } Q_{2}\left(\xi_{\nu}\right) \geqq \nu \text { for any } \nu . \tag{3.4}
\end{equation*}
$$

Then, for a fixed $\varepsilon^{\prime}, 0<\varepsilon^{\prime}<1 / 4$ and large ν, from (2.2) and (3.4)

$$
\left\{\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon^{\prime} Q\left(i \xi_{\nu}\right)}\right)\right\}^{2} \geqq \frac{C \cdot Q_{2}\left(\xi_{\nu}\right)^{2}}{\left|Q_{1}\left(\xi_{\nu}\right)\right|+Q_{2}\left(\xi_{\nu}\right)} \geqq \frac{1}{2} \cdot C \nu
$$

with a constant $C>0$, hence $\left|\sqrt{a^{2}-4 \varepsilon^{\prime} Q\left(i \xi_{\nu}\right)}\right| \geqq\left|\operatorname{Re} \sqrt{a^{2}-4 \varepsilon^{\prime} Q\left(i \xi_{\nu}\right)}\right|$ $\geqq \sqrt{1 / 2 \cdot C \nu}$. Thus we obtain:

$$
\begin{cases}\operatorname{Re} \lambda_{1}\left(\xi_{\nu}, \varepsilon^{\prime}\right)=\frac{1}{2 \varepsilon^{\prime}}\left\{-a_{1}-\operatorname{Re} \sqrt{a^{2}-4 \varepsilon^{\prime} Q\left(i \xi_{\nu}\right)}\right\} \leqq 0 \quad \text { for large } \nu, \tag{3.5}\\ \operatorname{Re} \lambda_{2}\left(\xi_{\nu}, \varepsilon^{\prime}\right)=\frac{1}{2 \varepsilon^{\prime}}\left\{-a_{1}+\operatorname{Re} \sqrt{a^{2}-4 \varepsilon^{\prime} Q\left(i \xi_{\nu}\right)}\right\} \rightarrow \infty \quad \text { as } \nu \rightarrow \infty\end{cases}
$$

$$
\begin{equation*}
\left|\frac{\lambda}{\lambda_{2}-\lambda_{1}}\right|=\frac{1}{2}(o(\nu)+1) . \tag{3.6}
\end{equation*}
$$

Applying (3.5) and (3.6) to (1.2), it follows that

$$
\left|Y_{1}\left(t, \xi_{\nu}, \varepsilon^{\prime}\right)\right| \rightarrow \infty \quad \text { as } \nu \rightarrow \infty \quad \text { for fixed } t>0
$$

Thus, the condition (II) of (1.5) is necessary.
Sufficiency of the conditions (1.5). First we shall prove that $\operatorname{Re} \lambda$ are bounded above.
Set $\Xi_{a}=\left\{\xi ; Q_{1}(\xi) \leqq a\right\}$, and take $C^{\prime} \geqq C$, then from (1.5),

$$
\begin{gather*}
Q_{2}^{2}(\xi) \leqq R \cdot\left(Q_{1}(\xi)+C\right) \leqq 2 R \cdot C^{\prime} \quad \text { for } \xi \in \Xi_{C^{\prime}} \tag{3.7}\\
Q_{2}^{2}(\xi) \leqq R \cdot\left(Q_{1}(\xi)+C\right) \leqq 2 R \cdot Q_{1}(\xi) \text { for } \xi \in E^{m}-\Xi_{C^{\prime}}
\end{gather*}
$$

Since on $\Xi_{C^{\prime}}, Q_{2}^{2}(\xi)$ is bounded by (3.7), we get from Lemma 2 that $\operatorname{Re} \lambda$ are bounded above.

If $\xi \in E^{m}-\Xi_{C^{\prime}}$, using (3.8) we get by (2.1) that, for sufficiently large C^{\prime} and small $\varepsilon_{0}>0$,
$\left\{\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon Q}\right)\right\}^{2} \leqq \frac{1}{2}\left\{\left(a_{1}^{2}-a_{2}^{2}-4 \varepsilon Q_{1}\right)+\left(a_{1}^{2}+a_{2}^{2}+4 \varepsilon Q_{1}\right)\right\}=a_{1}^{2}$ for $0<\varepsilon \leqq \varepsilon_{0}$, hence $\quad \operatorname{Re} \lambda=\frac{1}{2 \varepsilon}\left\{-a_{1}+\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon Q}\right)\right\} \leqq \frac{1}{2}\left\{-a_{1}+a_{1}\right\}=0$.
Thus, $\operatorname{Re} \lambda(\xi, \varepsilon)$ are bounded above on $\xi \in E^{m}, 0<\varepsilon \leqq \varepsilon_{0}$. Now by Lemma 5 and Theorem A^{\prime} we have only to prove the boundedness of $\mid Y_{1}(t, \xi$, $\varepsilon) \mid$. We put

$$
\begin{equation*}
H_{s}=\left\{\xi ;\left|4 \varepsilon Q_{1}(\xi)+a_{2}^{2}-a_{1}^{2}\right| \geqq \frac{1}{4} a_{1}^{2}\right\} . \tag{3.9}
\end{equation*}
$$

If $\xi \in H_{\mathrm{s}}$, then $\left|\sqrt{a^{2}-4 \varepsilon \cdot Q}\right| \geqq \sqrt{\mid a_{1}^{2}-a_{2}^{2}-4 \varepsilon Q_{1}} \left\lvert\, \geqq \frac{1}{2} a_{1}\right.$, thus by Lemma $4\left|Y_{1}(t, \xi, \varepsilon)\right|$ is bounded on H_{s}.

If $\xi \in E^{m}-H_{c}$ and $a_{2} \neq 0$, we have $\left|4 \varepsilon Q_{1}\right| \leqq \frac{1}{4} a_{1}^{2}+\left|a_{2}^{2}-a_{1}^{2}\right|$ from (3.9).
Thus from (3.7) and (3.8)

$$
\begin{align*}
\left|4 \varepsilon Q_{2}\right| & \leqq 4 \varepsilon \operatorname{Max}\left\{\sqrt{2 R C^{\prime}}, \sqrt{2 R\left|Q_{1}\right|}\right\} \tag{3.10}\\
& \leqq 4 \varepsilon \operatorname{Max}\left\{\sqrt{2 R C^{\prime}}, \sqrt{1 / 2 \cdot R \cdot \varepsilon^{-1}\left(1 / 4 \cdot a_{1}^{2}+\left|a_{2}^{2}-a_{1}^{2}\right|\right.}\right)
\end{align*}
$$

Hence, for sufficiently small $\varepsilon_{0}>0$

$$
\left|\sqrt{a^{2}-4 \varepsilon Q}\right| \geqq \sqrt{\left|2 a_{1} a_{2}-4 \varepsilon Q_{2}\right|} \geqq \sqrt{\left|a_{1} a_{2}\right|}>0 \quad\left(0<\varepsilon \leqq \varepsilon_{0}\right),
$$

and consequently by Lemma $4\left|Y_{1}(t, \xi, \varepsilon)\right|$ is bounded.
If $a_{2}=0$, by (3.10), there exists $\varepsilon_{0}>0$ such that

$$
\begin{equation*}
\left(4 \varepsilon Q_{2}\right)^{2} \leqq \frac{1}{2} \cdot a_{1}^{4} \quad \text { for } \quad \xi \in E^{m}-H_{s}, \quad 0<\varepsilon \leqq \varepsilon_{0} \tag{3.11}
\end{equation*}
$$

and as $\left|4 \varepsilon Q_{1}-a_{1}^{2}\right| \leqq \frac{1}{4} \cdot a_{1}^{2}$ for $\xi \in E^{m}-H_{c}$, we get from (2.1) and (3.11)
$\left\{\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon Q}\right)\right\}^{2} \leqq \frac{1}{2}\left\{\frac{1}{4} \cdot a_{1}^{2}+\sqrt{\frac{1}{16} \cdot a_{1}^{4}+\frac{1}{2} \cdot a_{1}^{4}}\right\}=\frac{1}{2} \cdot a_{1}^{2}$, and consequently

$$
\operatorname{Re} \lambda=\frac{1}{2 \varepsilon}\left\{-a_{1}+\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon Q}\right)\right\} \leqq \frac{1}{2 \varepsilon}\left\{-a_{1} \pm \frac{1}{\sqrt{2}} a_{1}\right\} \leqq-\frac{1}{8 \varepsilon} \cdot a_{1} .
$$

Hence $\operatorname{Re}\left\{\lambda_{1}+\theta\left(\lambda_{2}-\lambda_{1}\right)\right\} \leqq-\frac{1}{8 \varepsilon} \cdot a_{1}$ for $0 \leqq \theta \leqq 1, \xi \in E^{m}-H_{c}$.

On the other hand, from (3.9) and (3.11) we have for $\xi \in E^{m}-H_{s}$

$$
\left|\lambda_{1}\right| \leqq \frac{1}{2 \varepsilon}\left\{a_{1}+\left|\sqrt{a^{2}-4 \varepsilon Q}\right|\right\} \leqq \frac{1}{2 \varepsilon}\left\{a_{1}+\sqrt{\left|a_{1}^{2}-4 \varepsilon Q_{1}\right|+\left|4 \varepsilon Q_{2}\right|} \left\lvert\, \leqq \frac{1}{\varepsilon} \cdot a_{1} .\right.\right.
$$

Then by (2.3), we get for $t>0$

$$
\begin{equation*}
\left|Y_{1}(t, \xi, \varepsilon)\right| \leqq\left(1+\frac{1}{\varepsilon} a_{1} t\right) \exp \left(-\frac{1}{8 \varepsilon} a_{1} t\right), \tag{3.12}
\end{equation*}
$$

hence $\left|Y_{1}(t, \xi, \varepsilon)\right|$ is bounded.
Q.E.Q.

Proof of Theorem 3. Necessity of the conditions (1.6). If (I) of (1.6) did not hold, then we can take a sequence such that with some constant $C>0$

$$
\begin{equation*}
\left|Q_{2}\left(\xi_{\nu}\right)\right| \geqq C\left|\xi_{\nu}\right| . \tag{3.13}
\end{equation*}
$$

We can take a sequence $\left\{\varepsilon_{\nu}\right\}, \varepsilon_{\nu}>0$, such that

$$
4 \varepsilon_{\nu}\left\{\left|Q_{1}\left(\xi_{\nu}\right)\right|+\left|Q_{2}\left(\xi_{\nu}\right)\right|\right\} \leqq \frac{1}{2} a_{2}^{2} \quad \text { and } \quad \varepsilon_{\nu} \rightarrow 0 \quad \text { as } \nu \rightarrow \infty
$$

then by (2.2)

$$
\left\{\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon_{\nu} Q\left(i \xi_{\nu}\right)}\right)\right\}^{2} \geqq \frac{\varepsilon_{\nu}^{2} Q_{2}^{2}\left(\xi_{\nu}\right)}{a_{2}^{2}}
$$

Hence

$$
\left\{\begin{array}{c}
\operatorname{Re} \lambda_{1}\left(\xi_{\nu}, \varepsilon_{\nu}\right) \leqq 0, \tag{3.14}\\
\operatorname{Re~} \lambda_{2}\left(\xi_{\nu}, \varepsilon_{\nu}\right) \geqq \frac{\left|Q_{2}\left(\xi_{\nu}\right)\right|}{2\left|a_{2}\right|} \geqq \frac{C\left|\xi_{\nu}\right|}{2\left|a_{2}\right|},
\end{array}\right.
$$

and

$$
\begin{equation*}
\left|\lambda_{2}-\lambda_{1}\right|=\frac{1}{\varepsilon_{\nu}}\left|\sqrt{a^{2}-4 \varepsilon_{\nu} Q\left(\xi_{\nu}\right)}\right| \leqq \frac{1}{\varepsilon_{\nu}} \sqrt{\left|a_{2}^{2}\right|+\left|\frac{a_{2}^{2}}{2}\right|}<\frac{2\left|a_{2}\right|}{\varepsilon_{\nu}} . \tag{3.15}
\end{equation*}
$$

Using (3.14) and (3.15), we get

$$
\int_{0}^{T}\left|\frac{1}{\varepsilon_{\nu}} \cdot Y_{2}\left(t, \xi_{\nu}, \varepsilon_{\nu}\right)\right| d t \geqq \frac{1}{2\left|a_{2}\right|} \int_{0}^{T}\left\{\exp \left(\frac{C\left|\xi_{\nu}\right|}{2\left|a_{2}\right|} t\right)-1\right\} d t \rightarrow \infty \quad \text { as } \nu \rightarrow \infty .
$$

Hence from Theorem A^{\prime} (1.1) can not be H_{p}-stable.
The proof of the necessity of (II) in (1.6) goes in the same way as that of (I) of (1.5) in Theorem 2.

Sufficiency of the conditions (1.6). We take $\varepsilon_{0}>0$ such that $a_{2}^{2}-4 \varepsilon_{0}|c| \geqq(1 / 2) a_{2}^{2}$, then from (1.6),

$$
\begin{equation*}
a_{2}^{2}+4 \varepsilon \cdot Q_{1} \geqq \frac{1}{2} \cdot a_{2}^{2} \quad \text { for } 0<\varepsilon \leqq \varepsilon_{0} . \tag{3.16}
\end{equation*}
$$

Therefore, by (2.2)

$$
\begin{equation*}
\left\{\operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon Q}\right)\right\}^{2} \leqq \frac{\left(4 \varepsilon Q_{2}\right)^{2}}{2 a_{2}^{2}}=\frac{8 K^{2}}{a_{2}^{2}} \varepsilon^{2} \tag{3.17}
\end{equation*}
$$

and consequently
and by (3.16)

$$
\begin{equation*}
\operatorname{Re} \lambda=\frac{1}{2 \varepsilon} \cdot \operatorname{Re}\left(\pm \sqrt{a^{2}-4 \varepsilon Q}\right) \leqq \frac{\sqrt{2}|K|}{\left|a_{2}\right|} \tag{3.18}
\end{equation*}
$$

$$
\begin{equation*}
\left|\sqrt{a^{2}-4 \varepsilon Q}\right| \geqq \sqrt{\left|a_{2}^{2}+4 \varepsilon Q_{1}\right|} \geqq \frac{1}{\sqrt{2}}\left|a_{2}\right| . \tag{3.19}
\end{equation*}
$$

Applying (3.18) and (3.19) to Lemma 4, it follows that $\left|Y_{1}(t, \xi, \varepsilon)\right|$ is bounded, so by Lemma 5 and Theorem A^{\prime}, the equation (1.1) is H_{p}^{-} stable.
Q.E.D.

[^0]: 4) For a complex number $b, \sqrt{\bar{b}}$ denotes a square-root of b whose real part is non-negative.
 5) For a complex number $b, \operatorname{Re} b$ denotes real part of b, and $\operatorname{Im} b$ denotes imaginary part.
