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7. On the condition (ii). It is easy to see that a semi-simple
algebra satisfies the condition (.)" but not the condition (ii)" in general.
Let E be an algebra, and let u eE; then we denote by (u)r the right
ideal generated by u, that is, the set of all elements u-ux, where
runs over the scalar field and x over the whole E; we write (u) the
left ideal generated by u.

LEMMA 1. For a semi-simple algebra E, each one of the following
conditions is equivalent to the condition (ii):

(1) For any two non-zero elements u, veE, we have uEEv
#{0}.

(2) For any two non-zero elements u, veE, we have (U)r(V)
#{0}.

Proof. It is clear that the condition (ii) implies (1) and (1) implies
(2). To prove the implication (2)->(ii), let us suppose that an algebra
E satisfies the condition (2) and not (ii). Then there exist two non-
zero elements u, vE such that uxv--O for every xE. Since E is
semi-simple, we can find an element aeE with ua 0, and so by (2),
there exists a non-zero element w--ua+uab=flv+cv (ua)r (v)t, where
a, fl are two numbers and b, c E. Now, if w--0, then for any number
and any x eE, we have

w+xww--xw+w +wxw+xw +xwxw= 0,
since wxw=(aua+uab)x(flv+cv)=O; it follows that w belongs to the
radical of E, and so w=0, which is a contradiction. Thus w=afluav
+auacv+fluabv+uabcvO. But this is absurd since uEv={O}.

LEMMA 2. For an algebra E with a minimal left ideal L such
that L{O}, each one of the following conditions is equivalent to the
condition (ii):

(1) For any non-zero element u eE, we have uEL {O}.
(2) For any non-zero element u eE, we have uL {O}.
Proof. Since L[0}, we can find an idempotent pE such that

L=Ep. The implication (ii)-(1) is obvious, because uEpuEL.
If there exists a non-zero element uxeuEEp, then we have ux=ap
for some ae E, and hence 0 ap--uxp uL, proving the implication
(1)-+(2). Now suppose that the condition (2) is satisfied, and let u, v

1) Cf. S. Kasahara: Representation of some topological algebras. I, II, Proc.
Japan Acad., 34, 355-360 (1958); 35, 89-94 (1959).
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be two non-zero elements of E. Then since vEp {0}, we can find an
element beE such that vbpO. We shall now show that Evbp{O}.
Suppose that Evbp--{O}; then the set I of all elements xp specified by
the relation Exp= {0} contains a non-zero element vbp, and as can easily
be seen, I is a left ideal contained in the minimal left ideal Ep. Hence
I--Ep. It follows that peI, and we have Ep--{0}, which is absurd.
Thus Evbp-{0}. Now since the left ideal Evbp is contained in the
minimal left ideal Ep, we have Evbp--Ep and so we have uEvbp--uEp

{0}, which implies .uEv {0}. This completes the proof.
8. Continuity of the ring multiplication. LEMMA 1. Let E be

a topological algebra and peE be a non-zero idempotent. Then the
topology of Ep (resp. pE) induced from E is the finest topology having
the property that the linear mapping of E into Ep (resp. pE),
defined by (x)--xp (resp. ()--px), is continuous.

Proof. It will suffice to give a proof only to Ep. For any neigh-
bourhood U of 0 in E, we can find a neighbourhood V of 0 in E such
that Vp U. Hence Vp UEp. Conversely, if xpe V Ep, then
xp=(xp)p Vp, and so we have VEpVp.

Let E and F be two vector spaces constituting a separated dual
system. We say that a topology on E is compatible with the duality
between E and F if, with the topology, E is a topological vector space
(not necessarily locally convex) and the dual of E is F.

TEOREM 9’. Let E be a topological algebra satisfying the condi-
tion (ii), and let p, q e E be two non-zero idempotents of rank 1. Then:

(1) With the induced topology from E, the topological vector
spaces Ep (resp. pE) and Eq (resp. qE) are isomorphic.

(2) If the topology of Ep (vesp. pE) induced from E is com-
patible with the duality between Ep and pE (resp. pE and Ep), then
the topology of Eq (resp. pE) induced from E is compatible with the
duality between Eq and qE (resp. qE and Eq).

Proof. It will suffice to give a proof to Ep. By Lemma 4 of
section 4, we can take two elements a, beE such that p--aqb and
q=bpa. As was shown in the proof of Theorem 9, the mapping
defined by (xp)=xpaq is an (algebraic) isomorphism of Ep onto Eq,
and the mapping xq- xqbp is nothing more than the inverse mapping
of . But then the ring multiplication being separately continuous,
is a homeomorphism.

Let us now turn to prove the assertion (2). Let x’ be an arbitrary

continuous linear form on Eq. Since the mapping defined above is
continuous, x’o is a continuous linear form on Ep. Therefore by the
assumption, the linear form x’o is represented by an element pz of
pE. That is, for any xpEp, we have (xp, x’o}p=pzxp. It follows
that, for any xqeEq,



590 S. KASAHARA [Vol. 35,

(xq, x’}p= (xqbp, x’o}p=pzxqbp= 2p

for some 2. Hence we have qbpzxq-- qbpzxqbpa= 2qbpa-- 2q, and so
qbpzxq= (xq, x’}q for any xq Eq. Thus the dual of Eq is identical with
qE, and the proof of (2) is completed.

Let E be an algebra satisfying the condition (ii). We say that a
topology r compatible with the structure of vector space of E is
compatible with a non-zero idempotent of rank 1 if there exists a
non-zero idempotent peE of rank 1 such that the topology r is com-
patible with the duality between Ep and pE.

Let X be a locally convex Hausdorff vector space, (R) a covering
of X consisting of bounded sets in X, and E a subalgebra of A’(X, X)
containing all continuous linear mappings of finite rank. Then it is
easy to see that the topology of uniform convergence on members of
(R) is compatible with a non-zero idempotent of rank 1.

Let X be a vector space. Two topologies r and r. compatible with
the structure of vector space of X, are said to have the same dual if
the dual of X by r is identical with that by r..

LEMMA 2. Let E be an algebra satisfying the condition (ii), and
the set of all topologies compatible with the structure of vector space

of E. Further let o% be compatible with a non-zero idempotent of
rank 1. Then each topology compatible with the structure of algebra
of E and satisfying the following condition is compatible with a non-
zero idempotent of rank 1:

There are a finite number of topologies , ,. ., /, , ,...,
r,+(=r)e% such that / is coarser than for any i=0, 1,..., n and

have the same dual.that, for each i-0, 1,..., n--l, r and
Proof. Let peE be a non-zero .idempotent of rank 1. Suppose

that a topology r is compatible with the structure of algebra of E and
satisfies the condition. Then since the ring multiplication in E is
separately continuous for the topology r, it is sufficient to show that
every linear form x’ on Ep continuous for the topology r can be rep-
resented by an element of pE. Now put (x, x}=(xp, x’}, then we
obtain a linear form x on E continuous for the topology r. Hence by
the condition, x is continuous for the topology r/, and so is for the
topology r. Then again by the condition, x is continuous for the
topology rn, and so on. Thus we can conclude that x is continuous for
the topology r0, and s is its restriction x’ to Ep. This completes the
proof.

The following theorem is a simple generalization of a theorem due
to Rickart.)

THEOREM 11. Let E be an algebra satisfying the conditions (i)
2) C. E. Rickart: The uniqueness of norm problem in Banach algebras, Ann.

Math., 51, 615-628 (1950),
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and (ii). Then there exists at most one topology which makes E into
a metrizable complete topological algebra.

Proof. Let r and r be two topologies which make E into a metri-
zable complete topological algebra. We show that the identity mapping
of E with r into E with r. is closed, then in view of the closed graph
theorem, we have r=r.. Let [Xn} be a sequence in E which converges
to 0 for r and to a0 for r., and let p be a non-zero idempotent of
rank 1. By the condition (ii), we have axp =0 for some x eE, and so
we can find further an element y E such that ,@--pyaxp O. On the
other hand, since the topologies considered are Hausdorff ones, there
exist two neighbourhoods U1, U2 of 0 in E for the topologies rl and
respectively such that pe U (i=1,2) if and only if l [1. Now let
s0 be arbitrary. We can find then two neighbourhoods V and V2 of
0 in E for the topologies r and r2 respectively such that pyVlxp
and py V2xp s U2. From the assumption on the sequence {x.} it follows
that a--xe V. and Xne V for a sufficiently large positive integer n.
Therefore if we put py(a--x)xp=p and pyxxp--tip, we have a

and fl !, and hence we can conclude 12 since p=pyaxp--py
(a--Xn)Xp--pyxxp. We have thus reached a contradiction 2=0 or
pyaxp=O, which completes the proof.

COROLLARY. Let X be a locally convex Hausdorff vector space.
Then there exists at most one topology which makes (X, X) into a
metrizable complete topological algebra.

THEOREM 12. Let E be a locally convex Hausdorff algebra satis-
fying the condition (ii). Suppose that the ring multiplication is con-
tinuous and the topology of E is compatible with a non-zero idempotent

of rank 1. Then there exists a normed vector space X such that E
is mapped, by a continuous isomorphism, onto a subalgebra of (X, X)
containing all continuous linear mappings of finite rank. Con-
sequently, the topology of E can be defined by a family of norms.
If in addition the topological algebra E is complete, we can take a
Banach space as X.

Proof. Let U be a neighbourhood of 0 in E such that 2pc U if
and only if 12 !1. We can find then, by the assumption, a neighbour-
hood V of 0 in E such that VVpU. Now, for any pxepE, there
exists a non-zero number 2 for which we have 2px e V and so 2pxVp U.
It follows therefore that I(Vp, px}l is bounded, that is to say, Vp is
bounded in Ep, and hence the vector space Ep with the topology in-
duced from E is normable. Let us denote by X the vector space with
the norm determined by the set Vp, and let N be a neighbourhood of

3) A’b(X, X) denotes (X, X) with the topology of uniform convergence on each
bounded set in X.
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0 in E such that NNV. Then we have, for some number 0,
VpN and so we have NVpNNV or NW(Vp, Vp). It
follows that the isomorphism u- of E into A?(X, X) defined by
(xp)-uxp is continuous. On the other hand, since the topology of E
is compatible with the idempotent p, the dual of X is pE, and hence

E-- {; u e E} contains all continuous linear mappings of finite rank. If
E is complete, then by Lemma 3 of section 4, Ep is also complete.
This completes the proof.

COROLLARY 1. Let E be a metrizable complete locally convex
algebra satisfying the condition (ii). Suppose that the topology of E
is compatible with a non-zero idempotent of rank 1. Then there
exists a Banach space X such that E is mapped, by a continuous
isomorphism, onto a subalgebra of f?(X, X) containing all continuous
linear mappings of finite rank.

COROLLARY 2. Let X be a locally convex Hausdorff vector space,
X’ its dual, and E be a subalgebra of (X, X) containing all continuous
linear mappings of finite rank. If there exists a locally convex

Hausdorff topology r, compatible with the structure of algebra of E
and also compatible with a non-zero idempotent of rank 1, for which
the ring multiplication in E is continuous, then the Mackey topology
r(X, X’) is normable.

In fact, let x’)x (xeX and x’eX’) be a non-zero idempotent of
rank 1, then on the space Eox’)x--x’)X the topology r is normable,
and sv identical with the Mackey topology since r is compatible with
the non-zero idempotent of rank 1.

COROLLARY 3. Let X be a locally convex Hausdorff vector space.
Suppose that the topology of X is that of Mackey. Then metrizable
complete locally convex topology compatible with the structure of al-
gebra of (X, X) and also compatible with a non-zero idempotent
of rank 1 does not exist except for a topology by a norm. That is,
if the algebra ’(X, X) is metrizable complete for a locally convex
topology r compatible with a non-zero idempotent of rank 1, then X
and the topology r are normable; more precisely, the topology r is
identical with the topology by the operator norm.

In fact, by Corollary 2, the space X is normable and complete, and
so the conclusion follows from Theorem 11.

COROLLARY 4. Let X be a locally convex Hausdorff vector space,
and E be a subalgebra of (X, X) containing all continuous linear
mappings of finite rank. If there exists a locally convex Hausdorff
topology compatible with the structure of algebra of E for which the
ring multiplication is continuous and which induces into X a coarser
topology than the original one of X, then X is normable.
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The following corollary is a generalization of a well-known result2
COROLLARY 5. Let X be a locally convex Hausdorff vector space,

and a covering of X consisting of bounded sets in X. Further let
E be a topological subalgebra of (X, X) containing all continuous
linear mappings of finite rank. If, for a locally convex Hausdorff
topology r coarser than one of the topologies compatible with the duality
between E and its dual E’, the ring multiplication in E is continuous,
then the topology r is normable. If in addition the topology r is coarser
than the topology of uniform convergence on members of (R), then the
space X is also normable.

Proof. As pointed out before, the topology of uniform convergence
on members of (R) is compatible with a non-zero idempotent of rank 1,
and hence by Lemma 2, the topology r is also compatible with a non-
zero idempotent of rank 1. Therefore by Corollary 2 above, the
Mackey topology r(X, X’) can be given by a norm, and so by this
topology we can define a norm topology on E, which is finer than the
topology of uniform convergence on members of (R) and coarser than
the topology r. On the other hand, by the assumption there exists
a topology r finer than r and compatible with the duality between E
and E’. Consequently the norm topology is also compatible with the
duality between E and E’, and so the topology r is identical with the
norm topology.

In view of Corollary 2 of Lemma 4 of section 4 and Lemma 2 of
section 6, we see that a simple algebra E containing a non-zero idem-
potent of rank 1 is isomorphic with the algebra of all continuous linear
operators of finite rank on a locally convex Hausdorff vector space.
Therefore a simple algebra containing a non-zero idempotent of rank 1
and an identity element is of finite dimension.

On the other hand, we have the following
COROLLARY 6. Let E be a locally convex Hausdorff topological

simple algebra. If the ring multiplication in E is continuous and
the topology of E is compatible with a non-zero idempotent of rank
1, then E is mapped by a continuous isomorphism into the algebra
consisting of all completely continuous linear operators on a normed
space.

4) See for example S. Kasahara: Quelques conditions pour la normabilitd d’ua
espace localement convexe, Proc. Japan Acad., 32, 574-578 (1956).


