3. Certain Generators of Non-hyperelliptic Fields of Algebraic Functions of Genus $\geqq 3$

By Satoshi Arima
Department of Mathematics, Musashi Institute of Technology, Tokyo
(Comm. by Z. Suetuna, m.J.A., Jan. 12, 1960)

Let Ω be an algebraically closed field of characteristic 0 , and K a field of algebraic functions of one variable over Ω whose genus will be denoted by G. We shall denote the elements of K by letters like $x_{i}, x, y, u, u^{\prime}, v$; the divisors by E_{i}^{\prime}, prime divisors by P, the divisor classes of E_{i} by \bar{E}_{i}. The divisor classes of degree 0 form a group, which becomes the Jacobian variety of K when Ω is the field \boldsymbol{C} of complex numbers. We shall consider the elements of this group whose orders are finite and divide 2. They will be called two-division points of K. They form a group g isomorphic to the direct sum of $2 G$ cyclic groups of order 2 , so that there are $2^{2 G}$ two-division points $\bar{E}_{i}, 1 \leqq$ $i \leqq 2^{2 G}$, of K (cf. [1, p. 176, Th. 16 and Cor. to Th. 16] and [2, p. 79]). Let E_{i} be arbitrary representatives of $\overline{E_{i}}, 1 \leqq i \leqq 2^{2 G}$, and x_{i} an element of K such that $\left(x_{i}\right)=E_{i}{ }^{2}$. Now we consider the subfield

$$
k=\Omega\left(x_{1}, \cdots, x_{2^{2 G}}\right)
$$

of K. We shall show in Theorem 1 that $K=k$ (i.e. that K is generated by the functions x_{i} determined by two-division points \bar{E}_{i} if K is not hyperelliptic and $G \geqq 3$, and in Theorem 2 that $[K: k]=1$, 2 or 4 if K is hyperelliptic.

The above notations will be used throughout the paper. The genus of k will be denoted by g. We put $[K: k]=n$.

Lemma. If $n>1$ and $G \geqq 2$, then $g=0$ and $n \leqq 2+\frac{1}{G-3 / 2}$.
Proof. We use Riemann-Hurwitz's formula:

$$
\begin{equation*}
2 G-2=n(2 g-2)+\sum_{P}\left(e_{P}-1\right), \tag{1}
\end{equation*}
$$

where P runs over the prime divisors of K and e_{P} is the ramification index of P. We recall first, that $G>g$ since $G \geqq 2$, and that the number of 2 -division points of k is $2^{2 g}$. Denote by $\left(x_{i}\right)_{K}$ and $\left(x_{i}\right)_{k}$ the divisors of x_{i} in K and k respectively. We have

$$
\left(x_{i}\right)_{K}=E_{i}^{2}=\operatorname{Con}_{k / K}\left(x_{i}\right)_{k} .
$$

Now every divisor $\left(x_{i}\right)_{k}$ is either a square of another divisor: $\left(x_{i}\right)_{k}$ $=e_{i}^{2}$ or not a square of any divisor: $\left(x_{i}\right)_{k}=e_{i}$; but we can show here that at most $2^{2 g}$ divisors $\left(x_{i}\right)_{k}$ are squares of other divisors; in fact, if $\left(x_{i}\right)_{k}=e_{i}^{2}$, then e_{i} represents a 2 -division point of k, and it follows from
$E_{i}^{2}=\operatorname{Con}_{k / K}\left(e_{i}^{2}\right)$ and $E_{i}=\operatorname{Con}_{k / K}\left(e_{i}\right)$ that*

$$
i \neq h \Rightarrow E_{i}+E_{h} \text { in } K \Rightarrow e_{i}+e_{h} \text { in } k,
$$

so that these e_{i} represent distinct 2 -division points of k and hence the number of divisors $\left(x_{i}\right)_{k}$ which are squares of other divisors, is at most $2^{2 q}$.

This being so, we see that at least $2^{2 G}-2^{2 g}$ divisors $\left(x_{i}\right)_{k}$ are not squares of any divisors of k; we use, from now on, suffix j and h to denote these x_{i}, e_{i} and E_{i} :

$$
\begin{equation*}
\left(x_{j}\right)_{k}=e_{j}, \quad E_{j}^{2}=\operatorname{Con}_{k / K}\left(e_{j}\right) \tag{2}
\end{equation*}
$$

Call b the least common multiple of the denominators of the e_{j} 's, and put

$$
\begin{equation*}
e_{j}=\frac{a_{j}}{b}, \quad \operatorname{deg} \quad b=\operatorname{deg} a_{j}=m \tag{3}
\end{equation*}
$$

If $j \neq h$, we have $a_{j} \neq a_{h}$ but $a_{j} \sim a_{h}$. Denote by M the totality of prime divisors of k which appear in some a_{j} with odd exponents, and let l be the number of divisors belonging to M. Then we have (4)

$$
l \geqq 2(G-g)+1
$$

In fact, suppose that a_{j} and $a_{h}(j \neq h)$ have the same factors up to their square factors:

$$
\begin{aligned}
& a_{j}=\left(p_{j_{1}} \cdots p_{j_{r}}\right)\left(q_{j_{r+1}} \cdots q_{j_{s}}\right)^{2} \text {, } \\
& a_{h}=\left(p_{j_{1}} \cdots p_{j_{r}}\right)\left(q_{h_{r+1}} \cdots q_{h_{s}}\right)^{2}, r+2 s=m,
\end{aligned}
$$

then we have

$$
\left(\frac{q_{i_{r+1}} \cdots q_{j_{s}}}{q_{h_{r+1}} \cdots q_{h_{s}}}\right)^{2}=\frac{a_{j}}{a_{h}}=\frac{e_{j}}{e_{h}} \sim 1 .
$$

On the other hand, we see that

$$
j \neq h \Rightarrow \operatorname{Con}_{k / K}\left(e_{j} / e_{h}\right)^{\frac{1}{2}}=E_{j} / E_{h}+1 \Rightarrow \frac{q_{j_{r+1}} \cdots q_{j_{s}}}{q_{h_{r+1}} \cdots q_{h_{s}}}=\frac{e_{j}}{e_{h}}+1 \text { in } k
$$

so that, if we fix a_{j}, these $q_{j_{r+1}} \cdots q_{j_{s}} / q_{h_{r+1}} \cdots q_{h_{s}}$ represent distinct 2division points of k and the number of these 2 -division points does not exceed $2^{2 g}$. Thus we see that, for a given a_{j}, the number of a_{h} 's which coincide with a_{j} up to their square factors is at most $2^{2 g}$. Therefore, if we classify all the a_{j} 's by bringing those a_{j} 's which have the same factors up to their square factors into the same class, then the number of the classes is at least $\left(2^{2 G}-2^{2 g}\right) / 2^{2 g}=2^{2(G-g)}-1$. Now from the meanings of l and m, we have clearly $2^{2(G-g)}-1 \leqq\binom{ l}{m}+\binom{l}{m+2}+\cdots \leqq 2^{l-1}$. So we get $2^{2(G-g)} \leqq 2^{l-1}$. The formula (4) is thereby proved.

Now if a prime divisor $p \in M$ appears in b with an even exponent, then it follows clearly from (2) and (3) that p is ramified in K; if p occurs in a_{j} and b both with odd exponents, then p occurs in the denominator of the reduced expression of another e_{h} with an odd exponent

[^0](since b is the common multiple of the denominators of the reduced expressions of e_{j}^{\prime} 's), and so p is also ramified in K. Every $p \in M$ is therefore ramified in K.

We shall now show that

$$
\begin{equation*}
\sum_{P \mid p}\left(e_{P}-1\right) \geqq n / 2 \tag{5}
\end{equation*}
$$

for l prime divisors $p \in M$. To show this, write $\operatorname{Con}_{k / K}(p)=\left(P_{1}{ }_{1}{ }_{1} \ldots P_{h}{ }^{u_{h}}\right)^{2}$, $e_{P_{i}}=2 u_{i}$, then we have $n=[K: k]=2 u_{1}+\cdots+2 u_{h} \geqq 2 h$ since the constant field Ω is algebraically closed, and so we have $n / 2 \leqq n-h \leqq\left(2 u_{1}-1\right)$ $+\cdots+\left(2 u_{h}-1\right)=\sum_{P \mid p}\left(e_{P}-1\right)$, which proves (5).

We have from (1), (4) and (5) that
(6)

$$
2 G-2 \geqq n(2 g-2)+n / 2\{2(G-g)+1\} .
$$

If $g \geqq 1$, then it follows from (6) that $2 G-2 \geqq 2(2 g-2)+2(G-g)+1$ and $g=0$ which is a contradiction. Hence we must have $g=0$. By (6), we get therefore $2(G-1) \geqq n(G-3 / 2)$; as $G \geqq 2$, we have $n \leqq 2+\frac{1}{G-3 / 2}$.
q.e.d.

Theorem 1. If K is not hyperelliptic and $G \geqq 3$, then $n=1$.
Proof. If $n>1$, from $G \geqq 3$ follows by Lemma that $g=0$ and $n=2$, which implies that K is hyperelliptic; we must have therefore $n=1$.

Corollary. Let $\bar{E}_{1}, \cdots, \bar{E}_{2 G}$ be generators of \mathfrak{g}. Then we have $K=\Omega\left(x_{1}, \cdots, x_{2 G}\right)$.
Proof. In Theorem 1, take $E=E_{1}^{\varepsilon_{1}} \cdots E_{2 \varepsilon^{\varepsilon_{2} G}}$ as representative divisors of 2 -division points $\bar{E} \neq \bar{E}_{i}(1 \leqq i \leqq 2 G)$ of K, where ε_{i} are 1 or 0 ; let x be a function determined by E; it follows that

$$
x=\text { constant } \cdot x_{1}{ }_{1}^{{ }^{1_{1}} \cdots x_{2 G}{ }^{\varepsilon_{2 G} G} \in \Omega\left(x_{1}, \cdots, x_{2 G}\right), ~}
$$

which shows that $\Omega\left(x_{1}, \cdots, x_{29 G}\right)=\Omega\left(x_{1}, \cdots, x_{2 G}\right)$ and proves our assertion.
Theorem 2. Let K be hyperelliptic. 1) If $G \geqq 3$, then $n=1$ or 2 and in the latter case we have $g=0$. 2) If $G=2$, then $n=1$ or 2 or 4 , and in case $n=2$ or 4 , we have $g=0$.

Proof. Assume that $n>1$. If $G \geqq 3$, we have $n=2$ from Lemma; if $G=2$, we have $n=2$ or $n=4$. And from $n>1$ follows $g=0$ also by Lemma.

Remark. We shall show that cases $n=1$ and 2 for hyperelliptic K really take place. Let

$$
K=\boldsymbol{C}(x, y), \quad y^{2}=\left(x-\alpha_{1}\right)\left(x-\alpha_{2}\right) \cdots\left(x-\alpha_{2 G+1}\right),
$$

where $\alpha_{i} \in \boldsymbol{C}(1 \leqq i \leqq 2 G+1)$. Then K is hyperelliptic and of genus G. Denoting by Q_{i} and Q_{∞} the zeros and the poles of $x-\alpha_{i}(1 \leqq i \leqq 2 G+1)$, we have $\left(x-\alpha_{i}\right)=Q_{i}^{2} / Q_{\infty}^{2}$ and $(y)=Q_{1} \cdots Q_{2 G+1} / Q_{\infty}^{2 G+1}$. The divisors Q_{1} / Q_{∞}, $\cdots, Q_{2 G} / Q_{\infty}$ determine clearly a system of generators of 2 -division points of K, and 2 -division points of K are represented by the divisors E of the form $E=\left(Q_{1} / Q_{\infty}\right)^{\varepsilon_{1}} \cdots\left(Q_{2 G} / Q_{\infty}\right)^{\varepsilon_{2 G}}$ where $\varepsilon_{1}, \cdots, \varepsilon_{2 G}$ are 1 or 0 . The
elements u of K determined by $(u)=E^{2}=\left(x-\alpha_{1}\right)^{\varepsilon_{1}} \cdots\left(x-\alpha_{2 G}\right)^{\varepsilon_{2 G}}$ gener ate the subfield $\boldsymbol{C}(x)$ of K over which K is of degree 2 . Next, take an element v of K such that $\boldsymbol{C}\left(x, v^{2}\right)=K$ (for this, it is sufficient to set $v=y-1)$. The divisor $(v) Q_{1} / Q_{\infty}$ determine the same 2 -division points of K as that of Q_{1} / Q_{∞}, and 2 -division points of K are also represented by the divisors E^{\prime} of the form $E^{\prime}=\left((v) Q_{1} / Q_{\infty}\right)^{\varepsilon_{1}}\left(Q_{2} / Q_{\infty}\right)^{\iota_{2}} \cdots\left(Q_{2 G} / Q_{\infty}\right)^{\varepsilon_{2} G}$ where $\varepsilon_{1}, \cdots, \varepsilon_{2 G}$ are 1 or 0 . The elements u^{\prime} of K determined by $\left(u^{\prime}\right)=E^{\prime 2}=v^{2 \varepsilon_{1}}\left(x-\alpha_{1}\right)^{{ }^{1_{1}} \cdots\left(x-\alpha_{2 G}\right)^{\varepsilon_{2 G}}}$ generate the field $\boldsymbol{C}\left(x, v^{2}\right)=K$.

We have however not succeeded in constructing an example for $n=4$. The author is inclined to believe that this would not take place, which could be proved in making use of more precise inequalities than (4).

References

[1] C. Chevalley: Introduction to the Theory of Algebraic Functions of One Variable, New York (1951).
[2] S. Schilling: Foundations of an abstract theory of abelian functions, Amer. J. Math., 61 (1939).

[^0]: *) \sim denotes the linear equivalence relation between two divisors.

