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Let /2 be an algebraically closed field of characteristic 0, and K
a field of algebraic functions of one variable over /2 whose genus will
be denoted by G. We shall denote the elements of K by letters like
x, x, y, u, u’, v; the divisors by E, prime divisors by P, the divisor

classes of E by E. The divisor classes of degree 0 form a group,
which becomes the Jacobian variety of K when t? is the field C of
complex numbers. We shall consider the elements of this group whose
orders are finite and divide 2. They will be called two-division points

of K. They form a group isomorphic to the direct sum of 2G cyclic

groups of order 2, so that there are 2

i2, of K (cf. 1, p. 176, Th. 16 and Cor. to Th. 16 and 2, p.

79). Let E be arbitrary representatives of E, 1 i 2, and x an

element of K such that (z)--E. Now we consider the subfield

k-(x,. ., x)
of K. We shall show in Theorem 1 that K--k (i. e. that K is generated

by the functions x determined by two-division points E if K is not
hyperelliptic and G_ 3, and in Theorem 2 that [K"/]--1, 2 or 4 if
K is hyperelliptic.

The above notations will be used throughout the paper. The genus
of k will be denoted by g. We put

1LEMMA. If n 1 and G 2, then g--0 and n
G--3/2

PzooF. We use Riemann-Hurwitz’s formula:

1 2G-2-n(2g-2)+(ee-1),

where P runs over the prime divisors of K and ee is the ramification
index of P. We recall first, that G:g since G2, and that the
number of 2-division points of k is 2. Denote by (x) and (x) the
divisors of x in K and k respectively. We have

(x)--E-Con/(x).
Now every divisor (x) is either a square of another divisor: (x)

=e or not a square of any divisor: (x)-e; but we can show here
that at most 2 divisors (x) are squares of other divisors; in fact, if

(x) =e, then e represents a 2-division point of k, and it follows from



No. 1] Certain Generators of Fields of Algebraic Functions 7

E} Con(e) and E-Con/(e) that*)

ihE/E in Ke/ea in k,
so that these e represent distinct 2-division points of k and hence the
number of divisors (x) which are squares of other divisors, is at
most 2q.

This being so, we see that at least 2e--2 divisors (x) are not
squares of any divisors of k; we use, from now on, suffix 3" and h to
denote these x, e and E:
2 (x)--e, E]--Con/:(e).

Call b the least common multiple of the denominators of the e’s,
and put

a deg b-deg a--m.(3) ej----,
If j h, we have a a but a,-a. Denote by M the totality of
prime divisors of k which appear in some a with odd exponents, and
let be the number of divisors belonging to M. Then we have
4 2(G--g)+ 1.

In fact, suppose that a. and a (jh) have the same factors up to
their square factors:

qaj--(p,...p) (q;+... ),
a--(p,...p) (q+...q,), r+2s--m,

then we have
q,r+l""qJ, )-- aj ej ,’,.,1.---::. .q a e

On the other hand, we see that

j:@h:::)Con/:(e/e)_E/E/l::) qjr’’’qj e.1 in k,
q+. .q e

so that, if we fix a, these q,r+’’’q/q+" "’q, represent distinct 2-
division points of k and the number of these 2-division points does not
exceed 2q. Thus we see that, for a given a, the number of a’s which
coincide with a up to their square factors is at most 2. Therefore,
if we classify all the a’s by bringing those a’s which have the same
factors up to their square factors into the same class, then the number
of the classes is at least (2e-2)/2 =22(a-)- 1. Now from the meanings

orlando, we have elearly 2(a---l(1)+( )+...2-. So
.m m+2

we get 2(-)2t-. The formula (4) is thereby proved.
Now if a prime divisor pM appears in b with an even exponent,

then it follows clearly from (2) and (8) that p is ramified in K; if p
occurs in a and b both with odd exponents, then p occurs in the de-
nominator of the reduced expression of another e with an odd exponent

denotes the linear equivalence relation between two divisors.
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(since b is the common multiple of the denominators of the reduced
expressions of e’s), and so p is also ramified in K. Every peM is
therefore ramified in K.

We shall now show that
5 (e--1) n/2

for prime divisors pM. To show this, write Con/(p)-(P... pu).,
e--2u, then we have n-K:k--2u+... +2u 2h since the constant
field /2 is algebraically closed, and so we have n/2_n--h(2u--l)
+... +(2u--1)- (ee--1), which proves (5).

We have from (1), (4) and (5) that
( 6 2G-2 n(2g-2)+n/2{2(G-g)+l}.
If g:>l, then it follows from (6) that 2G--22(2g--2)+2(G--g)+l
and g-0 which is a contradiction. Hence we must have g--0. By (6),
we get therefore 2(G-1)n(G--3/2); as G.2, we have n2+

G--3/2
q.e.d.

THEOREM 1. If K is not hyperelliptic and G
_

3, then n-1.
PROOF. If n > 1, from G:>3 follows by Lemma that g--0 and

n-2, which implies that K is hyperelliptic; we must have therefore
n--1.

COROLLARY. Let E,...,E.e be generators of . Then we have
K-- t?(x, x.e).

PROOF. In Theorem 1 take E=E’ ..a as representative

divisors of 2-division points EE (1 i 2G) of K, where s are 1
or 0; let x be a function determined by E; it follows that

x =constant.x’... xd e 9(x, ., x),
which shows that 9(x,..., x:z)--9(x,..., x.a) and proves our assertion.

THEOREM 2. Let K be hyperelliptic. 1) If G 3, then n-- 1 or
2 and in the latter case we have g=0. 2) If G=2, then n-1 or 2
or 4, and in case n-2 or 4, we have g--O.

PROOF. Assume that n > 1. If G 3, we hav.e n-2 from Lemma;
if G-2, we have n-2 or n=4. And from n>l follows g-0 also
by Lemma.

REMARK. We shall show that cases n--1 and 2 for hyperelliptic
K really take place. Let

K---C(x, y), y2-- (-- 01)
where aeC(li2G+l). Then K is hyperelliptic and of genus G.
Denoting by Q and Q the zeros and the poles of x--a (1 i 2G-t-l),
we have (x-a)-QJQ and (y)-Q...Q.a//Q . The divisors Q/Q,
.., Q/Q determine clearly a system of generators of 2-division points

of K, and 2-division points of K are represented by the divisors E of
the form E-(Q/Q)’...(Qz/Q)’:a where s,...,sa are I or 0. The
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elements u of K determined by (u)=E=(x--a).. .(x--a)" gener-
ate the subfield C(x) of K over which K is of degree 2. Next, take
an element v of K such that C(x, v)=K (for this, it is sufficient to
set v=y--1). The divisor (v)QdQ determine the same 2-division points
of K as that of QdQ, and 2-division points of K are also represented
by the divisors E’ of the form E’=((v)QdQ)(QdQ)’...(Q/Q)
where s,...,s are 1 or 0. The elements u’ of K determined by
(u’)=E’--vV(x--a)...(x--a)z generate the field C(x, v)=K.

We have however not succeeded in constructing an example for
n-4. The author is inclined to believe that this would not take place,
which could be proved in making use of more precise inequalities than
(4).
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