18. A Continuity Theorem in the Potential Theory

By Masanori Kishi

Mathematical Institute, Nagoya University (Comm. by K. KUNUGI, M.J.A., Feb. 12, 1960)

Introduction. Let Ω be a locally compact separable metric space and let Φ be a positive symmetric kernel satisfying the continuity principle, that is, let Φ be a real-valued continuous function defined on the product space $\Omega \times \Omega$ such that

1° $0 < \Phi(P, Q) \le +\infty$,

No. 2]

 $2^{\circ} \quad \varPhi(P,Q)$ is finite except at most at the points of diagonal set of $\Omega \times \Omega$,

 $3^{\circ} \quad \Phi(P,Q) = \Phi(Q,P),$

 4° for any compact set $K \subset \Omega$ and for any positive number ε , there is a compact set L such that

 $\Phi(P,Q) < \varepsilon \quad \text{on } K \times (\Omega - L),$

 5° if a potential U^{μ} of a positive measure μ with compact support S_{μ} is finite and continuous as a function on the support S_{μ} , then it is continuous in Ω , where the potential U^{μ} is defined by

$$U^{\mu}(P) = \int \Phi(P, Q) d\mu(Q).$$

It is known that every potential U^{μ} of a positive measure with compact support is quasi-continuous in Ω , that is, for any positive number ε , there is an open set G_{ε} such that $\operatorname{cap}(G_{\varepsilon}) \leq \varepsilon$ and U^{μ} is finite and continuous as a function on $\Omega - G_{\varepsilon}$. This is called an "in the large" continuity theorem. In this note we communicate an "in the small" continuity

Theorem. Let μ be a positive measure with compact support. Then at any point P except at most at the points of a polar set, there exists an open set G(P), thin at P, such that the restriction of U^{μ} to $\Omega - G(P)$ is finite and continuous at P.

This theorem was proved by Deny [3] in the case of the Newtonian potentials in the *m*-dimensional Euclidean space. Recently Smith [6] has remarked that this is valid for the potentials of order α , $0 < \alpha < m$.

1. Capacities. A set $E \subset \Omega$ is called a *polar set* if it is contained in some $I_{\mu} = \{P: U^{\mu}(P) = +\infty\}$, where μ is a positive measure of total measure finite. We denote by \mathfrak{P} the family of all polar sets. For any set X we put

$$\mathfrak{F}_{X} = \{\mu \ge 0; \ \mu(\Omega) < +\infty, \ U^{\mu} \ge 1 \text{ on } X \text{ except } E \in \mathfrak{P}\}, \ f(X) = egin{cases} \inf_{\mu \in \mathfrak{F}_{X}} \mu(\Omega) \ +\infty & ext{if } \mathfrak{F}_{X} \text{ is empty,} \end{cases}$$

 $\operatorname{cap}_i(X) = \sup f(K)$ where K ranges over the class of all compact sets contained in X,

 $\operatorname{cap}_{e}(X) = \inf \operatorname{cap}_{i}(G)$ where G ranges over the class of all open sets containing X.

The set functions $\operatorname{cap}_i(X)$ and $\operatorname{cap}_e(X)$ are called the inner and outer capacities of X, respectively. A set A is said to be capacitable when its inner capacity coincides with its outer capacity, and we denote by $\operatorname{cap}(A)$ the common value. Evidently every open set is capacitable.

We have obtained the following propositions in the preceding paper [4].

Proposition 1. For any set $X f(X) = \operatorname{cap}_{e}(X)$.

Proposition 2. A set E is of outer capacity zero if and only if it is a polar set.

Proposition 3. Suppose that a sequence $\{\mu_n\}$ of positive measures converges vaguely to μ and that the total measures $\mu_n(\Omega)$ are bounded. Then

$$U^{\mu} = \lim U^{\mu} n$$

in Ω with a possible exception of a polar set.

2. The fine topology. Let P_0 be an arbitrary point in Ω . A subset N of Ω is called a *fine* neighborhood of P_0 if it contains some $\omega(P_0) \frown \{P; U^{\mu}(P) < U^{\mu}(P_0) + \rho\},$

where $\omega(P_0)$ is a neighborhood of P_0 with respect to the original topology in Ω , $\mu \ge 0$, $U^{\mu}(P_0) < +\infty$ and $\rho > 0$. We shall denote by $\mathfrak{N}(P_0)$ the family of all fine neighborhoods of P_0 . It is easily seen that $\mathfrak{N}(P_0)$ has the following properties:

i) If $N_1 \in \mathfrak{N}(P_0)$ and $N_2 \supset N_1$, then $N_2 \in \mathfrak{N}(P_0)$.

ii) Every $N_1 \in \mathfrak{N}(P_0)$ contains P_0 .

iii) If N_1 and N_2 belong to $\mathfrak{N}(P_0)$, then $N_1 \frown N_2$ belongs to $\mathfrak{N}(P_0)$.

iv) If $N_1 \in \mathfrak{N}(P_0)$, then there is an $N_2 \in \mathfrak{N}(P_0)$ such that $N_1 \in \mathfrak{N}(P)$ for every $P \in N_2$.

On account of these properties a topology is defined in Ω by means of $\mathfrak{N}(P)$, $P \in \Omega$. This topology is called the fine topology and denoted by \mathfrak{T}_{f} . Evidently the fine topology is stronger than the original one.

Theorem 1. Every potential U^{μ} of a positive measure is continuous with respect to the fine topology at any point P where $U^{\mu}(P)$ is finite. The fine topology is the weakest among those topologies \mathfrak{T} , stronger than the original one in Ω , with respect to which every potential is continuous at any point where it is finite.

Remark. If \mathfrak{T} is not stronger than the original one, then it is not necessarily stronger than \mathfrak{T}_{f} .

3. Thin sets. Definition. A set A is called thin at P_0 when P_0 is an isolated point of $A \subseteq \{P_0\}$ with respect to the fine topology.

As to thin sets we refer to Brelot [1], Choquet [2] and Ohtsuka

66

A Continuity Theorem in the Potential Theory

[5] as well as papers cited in the introduction.

Immediately we have:

1) If A is thin at P_0 and $A \supset B$, then B is thin at P_0 ,

and 2) if A and B are thin at P_0 , then $A \cup B$ is thin at P_0 .

The following is an answer to a part of the question raised by Choquet [2].

Theorem 2. If E is a polar set, then E is thin at every point of Ω .

Corollary. Let E be a polar set and let A be thin at P_0 . Then $A \cup E$ is thin at P_0 .

4. Continuity "in the small". By Propositions 1 and 3 and the corollary of Theorem 2 we can prove

Theorem 3. Let G_n $(n=1, 2, \dots)$ be an open set such that $\operatorname{cap}(G_n) \to 0$. Then there exists a polar set E such that at any point $P \in \Omega - E$ some G_n is thin.

Our "in the small" continuity theorem follows from Theorem 3.

References

- M. Brelot: Points irréguliers et transformations continues en théorie du potentiel, J. Math. Pures et Appl., 19, 319-337 (1940).
- [2] G. Choquet: Sur les fondements de la théorie fine du potentiel, C. R. Acad. Sci., Paris, 244, 1606-1609 (1957).
- [3] J. Deny: Les potentiels d'énergie finie, Acta Math., 82, 107-183 (1950).
- [4] M. Kishi: Capacitability of analytic sets (to appear in Nagoya Math. J.).
- [5] M. Ohtsuka: On thin sets in potential theory, Seminars on analytic functions, I, Inst. Adv. Study, 302-313 (1957).
- [6] K. T. Smith: Mean values and continuity of Riesz potentials, Comm. Pure and Appl. Math., 9, 569-576 (1956).

No. 2]