106 [Vol. 36,

30. On Multi-valued Monotone Closed Mappings

By Akihiro OKUYAMA

Osaka University of the Liberal Arts and Education (Comm. by K. Kunugi, M.J.A., March 12, 1960)

V. I. Ponomaleff [1] has defined the new space κX for T_1 -space X. According to him the space κX is the set of all non-empty closed subsets of X and topology is defined as follows: for each point (F_0) of κX and for every neighborhood OF_0 of F_0 in X $D_1(OF_0)$ is the set of all closed subsets of X contained in OF_0 and these $D_1(OF_0)$ form the bases of the neighborhoods of (F_0) in κX . In our paper we shall use his definition for the topological space X (without T_1 -axiom).

A multi-valued mapping f of a topological space X into a topological space Y is monotone if for each point x of X fx is closed in Y and for each pair of distinct points x and x' of X $fx
subseteq \phi$.

We use the definitions due to him: the continuity of a mapping f of X into Y is that for every point x of X and for each neighborhood Ofx of fx in Y there is a neighborhood Ox of x in X such that $fOx \subset Ofx$; the closedness of f is the closedness of the image of every closed subset of X; \overline{f} is a one-valued mapping of X into κY which maps every point x of X to a point (fx) of κY .

Theorem 1. If f is a one-valued closed continuous mapping of a topological space X onto a T_1 -space Y, then the inverse mapping f^{-1} is a multi-valued monotone closed continuous mapping of Y onto X. Conversely, if g is a multi-valued monotone closed continuous mapping of a topological space X onto a topological space Y and if for every point Y of Y $g^{-1}(Y)=x$ such that $gx\ni Y$, then g^{-1} is a one-valued closed continuous mapping of Y onto X.

Proof. Since f is continuous, f^{-1} is closed, and since Y is T_1 -space, f^{-1} is monotone. To prove that f^{-1} is continuous, let y be an arbitrary point of Y and $Of^{-1}(y)$ be an arbitrary neighborhood of $f^{-1}(y)$ in X. Since f is closed, there is an open inverse set $(Of^{-1}(y))_0^{*}$ such that $f^{-1}(y) \subset (Of^{-1}(y))_0 \subset Of^{-1}(y)$. Then $V = f(Of^{-1}(y))_0$ is a neighborhood of y in Y such that $f^{-1}(V) = (Of^{-1}(y))_0 \subset Of^{-1}(y)$. This completes the proof that f^{-1} is a multi-valued monotone closed continuous mapping.

Conversely, let g be a multi-valued monotone closed continuous mapping of X onto Y. To show that g^{-1} is closed, let A be an arbitrary closed subset of Y. Since $g^{-1}(A) = \{x | gx \land A \neq \phi; x \in X\}$, and if x_0 is an arbitrary point of $X - g^{-1}(A)$, then $gx_0 \land A = \phi$; that is, $gx_0 \subset X - A$.

^{*)} $(Of^{-1}(y))_0$ is the union of all $f^{-1}(p)$ $(p \in Y)$ such that $f^{-1}(p) \subset Of^{-1}(y)$.

Since g is continuous, there is a neighborhood Ox_0 of x_0 in X such that $gOx_0 \subset X-A$. This shows $gOx_0 \subset A=\phi$ and $Ox_0 \subset X-g^{-1}(A)$. So $X-g^{-1}(A)$ is open and $g^{-1}(A)$ is closed. Finally, we shall prove that g^{-1} is continuous. Let y_0 be an arbitrary point of Y and let $Og^{-1}(y_0)$ be an arbitrary neighborhood of $g^{-1}(y_0)$ in X. Since g is closed, $g(X-Og^{-1}(y_0))$ is closed in Y and since $g(X-Og^{-1}(y_0))=\bigcup\{gx|x\notin Og^{-1}(y_0);x\in X\}=\bigcup\{gx|gx\cap gOg^{-1}(y_0)=\phi;x\in X\},\ g(X-Og^{-1}(y_0))\neq y_0.$ Let $U=Y-g(X-Og^{-1}(y_0))$, then U is a neighborhood of y_0 in Y and $g^{-1}(U)=\{x|gx\cap U\neq \phi;x\in X\}=\{x|gx\cap g(X-Og^{-1}(y_0))=\phi;x\in X\}=\{x|x\in Og^{-1}(y_0);x\in X\}=Og^{-1}(y_0);$ that is, g^{-1} is continuous at y_0 . Then g^{-1} is continuous and this completes the proof.

In the following, we shall prove the invariance of topological properties under a multi-valued monotone closed continuous mapping under some restrictions.

Lemma 1. If f is a multi-valued monotone closed continuous mapping of a topological space X into a topological space Y, then \bar{f} is a (one-valued) closed continuous mapping of X onto $\bar{f}X$ (in κY).

Proof. The continuity of f is followed from [1]. We shall prove the closedness of \bar{f} . Let F be an arbitrary closed subset of X, then $\bar{f}F=\{(fx)|x\in F\}$, so it is sufficient to prove that $\bar{f}X-\bar{f}F$ is open in $\bar{f}X$. Let (fx_0) be an arbitrary point of $\bar{f}X-\bar{f}F$, then $x_0\notin F$; that is, $fx_0 \cap fF=\phi$. By the closedness of f V=Y-fF is an open subset of f containing fx_0 and so $D_1(V)\cap \bar{f}X$ is an open subset of $\bar{f}X$ containing (fx_0) . Since V=Y-fF, $D_1(V)\cap \bar{f}F=\phi$. This shows that $\bar{f}X-\bar{f}F$ is open. Thus Lemma 1 is proved.

Lemma 2. Let f be a multi-valued monotone closed continuous mapping of a topological space X onto a topological space Y. If $D_1(U)$ is a non-empty open subset of κY , then $\widetilde{U} = \bigcup_{\substack{f \in D_1(U) \\ f}} fx$ is open in Y.

Proof. By the continuity of \overline{f} , $V = \overline{f}^{-1}D_1(U) = \{x | (fx) \in D_1(U)\}$ is

Proof. By the continuity of \bar{f} , $V = \bar{f}^{-1}D_1(U) = \{x | (fx) \in D_1(U)\}$ is open in X. Since f is closed, f(X - V) is closed in Y. But $f(X - V) = \int_{x \in V} fx = Y - \int_{x \in V} fx = Y - \int_{(fx) \in D_1(U)} fx$, so $\int_{(fx) \in D_1(U)} fx = \tilde{U}$ is open in Y. This completes the proof.

Lemma 3. Let X be a normal space and A be a closed subset of X. If $\{U_i\}$ is a countable star-finite open covering of A, then there is a countable locally finite collection $\{V_i\}$ of open subsets of X such that $V_i \cap A \subset U_i$ $(i=1,2,\cdots)$ and $\{V_i \cap A\}$ covers A.

Proof. We shall prove it by induction. For U_1 , let $F_1 = A - \bigcup_{i \neq 1} U_i$ and $F'_1 = A - U_1$, then they are disjoint closed subsets of X. (If $F_1 = \phi$, we can omit U_1 from $\{U_i\}$ and if $F'_1 = \phi$, we begin from U_2 .) Since X is normal, there is an open subset G_1 of X such that $F_1 \subset G_1$ and

 $ar{G}_1 \cap F_1' = \phi$. Then $G_1 \cap A \subset U_1$ and $\{G_1 \cap A, U_2, \cdots\}$ is an open covering of A. If $U_1 \cap U_i = \phi$ for some i (i>1), then $U_i \subset A - U_1$ and $A - U_1$ is closed, so $ar{G}_1 \cap ar{U}_i = \phi$. We assume that there is a collection $\{G_i | i < n\}$ of open subsets of X such that $\{G_1 \cap A, G_2 \cap A, \cdots, G_{n-1} \cap A, U_n, U_{n+1}, \cdots\}$ is an open covering of A and $G_i \cap A \subset U_i$ (i < n). Moreover, for some i (i < n) $U_i \cap U_j = \phi$ implies $ar{G}_i \cap ar{G}_j = \phi$ if j < n, and $ar{G}_i \cap ar{U}_j = \phi$ if $j \ge n$. Now we shall construct G_n satisfying the above conditions. Let $F_n = A - \{(\ \cup G_i) \cap (\ \cup U_i)\}$ and $F_n' = (A - U_n) \cap \bigcup_i \{\bar{G}_i \mid U_i \cap U_n = \phi; i < n\}$.

Then F_n and F'_n are closed subsets of X and are disjoint by the assumption of induction. Since X is normal, there is an open subset G_n of X such that $F_n \subset G_n$ and $\overline{G}_n \cap F'_n = \phi$. Then $G_n \cap A \subset U_n$ and $\{G_1 \cap A, \cdots, G_n \cap A, U_{n+1}, \cdots\}$ is an open covering of A. Let $U_i \cap U_n$ $=\phi$ for some i. If i < n, then $\bar{G}_i \subset F'_n$; so $\bar{G}_i \subset \bar{G}_n = \phi$. If i > n, $U_i \subset A$ $-U_n$; so $\bar{U}_i \subset A - U_n \subset F'_n$; that is, $\bar{U}_i \subset \bar{G}_n = \phi$. By induction we have a collection $\{G_i\}$ of open subsets of X. First we show that $\{G_i \cap A\}$ is a covering of A. Let x be an arbitrary point of A. Since $\{U_i\}$ is star-finite, there is a number n_0 such that $j > n_0$ implies $x \in U_i$. Then from the covering $\{G_{1} \cap A, \dots, G_{n_0} \cap A, U_{n_0+1}, \dots\}$ of A x is contained in some $G_i \cap A$ $(i \leq n_0)$. This shows that $\{G_i\}$ covers A. Next, if $U_{i} \subset U_{j} = \phi$ (i > j), by the induction the collection $\{G_{i}, \cdots, G_{i}, U_{i+1}, \cdots\}$ shows $G_i \cap \overline{G}_i = \phi$. Finally, we construct the desired $\{V_i\}$. If $\{G_i\}$ is locally finite in X, let $G_i = V_i$. If $\{G_i\}$ is not locally finite in X, let X_0 be the set of all points at which $\{G_i\}$ is not locally finite. X_0 is closed in X and $X_0 \cap A = \phi$. Indeed, the closedness of X_0 is easy from the open of $X-X_0$. Let x be an arbitrary point of A. Since $\{U_i\}$ is star-finite, only finite number $\{U_{i_0}, \dots, U_{i_n}\}$ of $\{U_i\}$ contain xand there is a number n_0 such that $k > n_0$ implies $U_{k} \subset U_{ij} = \phi$ for each j, $j \leq n$. This shows that if we let the neighborhood of x be $Ox = \bigcap \{G_i \mid G_i \ni x\}$, then Ox intersects only G_i $(i \le n_0)$; that is, $\{G_i\}$ is locally finite at x. Now we have $X_0 \cap A = \phi$. Since X is normal, there is an open subset U of X such that $A \subset U$ and $\bar{U}_{\frown} X_0 = \phi$. If we let $V_i = G_i \subset U$, then $\{V_i\}$ is locally finite collection of open subsets of X which cover A and $V_i \cap A \subset G_i \cap A \subset U_i$.

Theorem 2. Let f be a multi-valued monotone closed continuous mapping of a topological space X onto a topological space Y and let for every point x of X fx be an S-space**) with Lindelöf property. If X is paracompact and Y is normal, then Y is paracompact.

Proof. By Lemma 1 \bar{f} is a closed continuous mapping of X onto $\bar{f}X$ and by the definition \bar{f} is one-to-one, $\bar{f}X$ is paracompact. Let

^{**&}gt; A space is S-space if every open covering has the star-finite open covering as refinement.

 $\mathfrak{U} = \{U_a\}$ be an arbitrary open covering of Y. Since for every point x of X fx is an S-space with the Lindelöf property, by Lemma 3 there is a countable locally finite collection $\{V_{a_i}^x|i=1,2,\cdots\}$ of open subsets of Y such that $V_{a_i}^x A$ contained in some element of \mathbb{U} . Let $V^x = \bigvee V_{a_i}^x$. Then $\{D_1(V^x) \cap \bar{f}X \mid x \in X\}$ is an open covering of $\bar{f}X$. Since $\bar{f}X$ is paracompact, there is a locally finite open covering $\{D_1(V_{\beta}) \cap \bar{f}X \mid \beta \in \Omega\}$ which is a refinement of $\{D_1(V^x) \cap \bar{fX} | x \in X\}$. By Lemma 2 for each $\beta \in \Omega$ there is an open subset \widetilde{V}_{β} of Y such that $D_1(\widetilde{V}_{\beta}) \frown fX = D_1(V_{\beta}) \frown fX$ and $\widetilde{V}_{\beta} \subset V_{\beta}$. For each $\beta \in \Omega$ we pick up one V^x such that $D_1(\widetilde{V}_{\beta}) \subset \overline{f}X$ $\subset D_1(V^x) \cap \bar{f}X$ and let $W_{\alpha_i}^{\beta} = V_{\alpha_i}^x \cap \widetilde{V}_{\beta}$ $(i=1,2,\cdots)$. Then $\{W_{\alpha_i}^{\beta} | i=1,2,\cdots; \beta \in \Omega\}$ is a locally finite open covering of Y. Indeed, since $W_{\alpha_i}^{\beta}$ is open and $\{\widetilde{V}_{\beta} | \beta \in \Omega\}$ covers Y, $\{W_{\alpha_i}^{\beta} | i = 1, 2, \cdots; \beta \in \Omega\}$ is an open covering of Y. Let y be an arbitrary point of Y. Then there is a point x of X such that $y \in fx$. Since $\{D_1(\widetilde{V}_{\beta}) \frown fX \mid \beta \in \Omega\}$ is locally finite, the only finite number $\{D_i(\tilde{V}_{\beta_i}) \cap \bar{f}X | i=1, 2, \dots, n\}$ intersect the neighborhood borhood $D_i(Ofx)$ of (fx); that is, $\widetilde{O}fx$ intersects only \widetilde{V}_{β_i} $(i=1, 2, \dots, n)$. Since for each $i \ \widetilde{V}_{\beta_i} = \bigcup_{i=1}^{\infty} W_{\alpha_j}^{\beta_i}$ and $\{W_{\alpha_j}^{\beta_i} | j=1, 2, \cdots\}$ is locally finite, there is a neighborhood O_iy of y which intersects only finite number of $\{W_{\alpha_j}^{\beta_i}|\ j=1,2,\cdots\}$. Let $Oy=\widetilde{O}fx_{\frown}\bigcap_{i=1}^nO_iy$. Then Oy is a neighborhood of y and intersects only finite number of $\{W_{\alpha_i}^{\beta}|\ i=1,2,\cdots;\ \beta\in\Omega\}$. This shows that $\{W_{\alpha_i}^{\beta} | i=1, 2, \cdots; \beta \in \Omega\}$ is locally finite. Moreover, each $W_{\alpha_i}^{\beta} \subset \text{some } V_{\alpha}^{x} \subset \text{some } U \in \mathbb{I} \text{ shows that } \{W_{\alpha}^{\beta} \mid i=1, 2, \cdots; \beta \in \Omega\}$ is a refinement of $\{U_{\alpha}\}$. This completes the proof.

If we use the Lemma 1 of [2], we have the following theorem in the same way:

Theorem 3. Let f be a multi-valued monotone closed continuous mapping of a topological space X onto a topological space Y and let for every point x of X fix be paracompact (countably paracompact). If X is paracompact and Y is collectionwise normal, then Y is paracompact (countably paracompact).

We know that, for a (one-valued) closed continuous mapping, if the inverse image of every point is compact, then the paracompactness (countably paracompactness) is invariant under the inverse mapping (see $\lceil 3 \rceil$).

By Theorems 1 and 2 (or 3) we have that, for a (one-valued) closed continuous mapping f of a topological space X onto a T_1 -space Y, if X is normal (collectionwise normal) and for every point y of Y $f^{-1}(y)$ is an S-space with the Lindelöf property (paracompact), then the paracompactness is invariant under the inverse mapping of f. In particular, if $f^{-1}(y)$ is countably paracompact in collectionwise normal space X,

then X is countably paracompact.

References

- [1] V. I. Ponomaleff: New space of closed sets and multi-valued continuous mapping of bicompactum, Math. Sb., 48 (90), 191-212 (1959).
- [2] C. H. Dowker: On a theorem of Hanner, Arkiv. for Mat., 2, nr. 15, 307-313 (1952).
- [3] S. Hanai: On closed mappings. II, Proc. Japan Acad., 32, 388-391 (1956).