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30. On Multi-valued Monotone Closed Mappings

By Akihiro OKUYAMA
Osaka University of the Liberal Arts and Education
(Comm. by K. KUNUGI, M.J.A., March 12, 1960)

V. 1. Ponomaleff [1] has defined the new space +X for T;-space X.
According to him the space £X is the set of all non-empty closed
subsets of X and topology is defined as follows: for each point (F,)
of #X and for every neighborhood OF, of F, in X D,(OF,) is the set
of all closed subsets of X contained in OF, and these D,(OF,) form
the bases of the neighborhoods of (F,) in #X. In our paper we shall
use his definition for the topological space X (without T-axiom).

A multi-valued mapping f of a topological space X into a topo-
logical space Y is monotone if for each point z of X fx is closed in
Y and for each pair of distinct points # and 2’ of X fu fx'=¢.

We use the definitions due to him: the continuity of a mapping
f of X into Y is that for every point # of X and for each neighbor-
hood Ofx of fx in Y there is a neighborhood Ox of x in X such that
SfOxCOfx; the closedness of f is the closedness of the image of every

closed subset of X; f is a one-valued mapping of X into x#Y which
maps every point « of X to a point (fx) of £Y.

Theorem 1. If f is a one-valued closed continuous mapping of
a topological space X onto a T,-space Y, then the inverse mapping
f1 is a multi-valued monotone closed continuous mapping of Y onto
X. Conversely, if g s a multi-valued monotone closed continuous
mapping of a topological space X onto a topological space Y and if
Sor every point y of Y g '(y)=ux such that gx>y, then g=' is a one-
valued closed continuous mapping of Y onto X.

Proof. Since f is continuous, f ! is closed, and since Y is T';-space,
f~' is monotone. To prove that f ! is continuous, let ¥ be an arbitrary
point of Y and Of “*(y) be an arbitrary neighborhood of f-*(y) in X.
Since f is closed, there is an open inverse set (Of ~!(y)),*> such that
) Of (), Of *(y). Then V=f(Of '(y)), is a neighborhood
of ¥y in Y such that f-*(V)=(0f *(%)),Of *(y). This completes the
proof that f-! is a multi-valued monotone closed continuous mapping.

Conversely, let g be a multi-valued monotone closed continuous
mapping of X onto Y. To show that g-! is closed, let A be an arbi-
trary closed subset of Y. Since g~'(4)={x|gx Ax¢; xcX}, and if x,
is an arbitrary point of X—g-'(4), then gx, - A=¢; that is, gr,CX—A.

*)  (Of-Yy)) is the union of all f~(p) (p&Y) such that f~(p) <OSf'(¥).
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Since g is continuous, there is a neighborhood Oz, of x, in X such
that ¢Ox,CX—A. This shows ¢gO0x, - A=¢ and Ox,CX—g'(4). So
X—g7'(A) is open and g~'(A) is closed. Finally, we shall prove that
g~' is continuous. Let ¥, be an arbitrary point of Y and let Og~'(y,)
be an arbitrary neighborhood of ¢-'(y,) in X. Since g is closed,
9(X—0g~'(y,)) is closed in Y and since g(X—0g~'(y,))= U{gx|x¢O0g ' (y,);
xve X}=U{gx|gx ~909 ' (y0)=¢; xecX}, 9(X—09"'(y,)dy,. Let U=Y
—g(X—0g~'(y,)), then U is a neighborhood of y, in ¥ and g (U)
={zlgr ~ U¢; ve X})={z]gr ~g9(X—097*(y,))=9; xe X}={a|weOg~*(y,);
xe X}=0g"'(y,); that is, g* is continuous at y,. Then g~' is continuous
and this completes the proof.

In the following, we shall prove the invariance of topological
properties under a multi-valued monotone closed continucus mapping
under some restrictions.

Lemma 1. If f is a multi-valued monotone closed continuous
mapping of a topological space X into a topological space Y, then
£ is a (one-valued) closed continuous mapping of X onto fX (in rY).

Proof. The continuity of f is followed from [1]. We shall prove
the closedness of f. Let F be an arbitrary closed subset of X, then
FF={(fx)|xe F}, so it is sufficient to prove that fX—fF is open in fX.
Let (fx,) be an arbitrary point of fX—fF, then x,¢F; that is, fx, ~fF
=¢. By the closedness of f V=Y —fF is an open subset of Y con-
taining fx, and so D,(V)fX is an open subset of fX containing (fz,).
Since V=Y—fF, D(V)~fF=¢. This shows that fX—fF is open.
Thus Lemma 1 is proved.

Lemma 2. Let f be a multi-valued monotone closed continuous
mapping of a topological space X onto a topological space Y. If D,(U)
18 a non-emplty open subset of kY, then U= ~ fxisopen in Y.

— — (J2)EDYU)

Proof. By the continuity of f, V=f “Dl(l}')={x|(fx)eD1(U)} is
open in X, Since f is closed, f(X—V) is closed in Y. But f(X—V)
=" fu=Y~"fr=Y— ~ fu,s0 ~ fux=U is open in Y. This

26V gV FDEDT) (F2IEDU)
completes the proof.

Lemma 3. Let X be a mormal space and A be a closed subset
of X. If {U)} is a countable star-finite open covering of A, then
there is a countable locally finite collection {V.} of open subsets of X
such that V, ACU, (i=1,2,---) and {V, A} covers A.

Proof. We shall prove it by induction. For U,, let F1=A—:“1Ui

%
and F/=A—"U,, then they are disjoint closed subsets of X. (If F,=¢,
we can omit U, from {U;} and if F/=¢, we begin from U,) Since
X is normal, there is an open subset G; of X such that F,CG, and
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G, ~F!=¢. Then G,~ACU, and {G,- A, U,, +--} is an open covering
of A. If U, U,=¢ for some 7 (¢>1), then UCA—U, and A—U, is
closed, so G, U,=¢. We assume that there is a collection {Gili<mn} of
open subsets of X such that {G, - 4, G, -4, ---,G,_, - A, U, U,,,, -}
is an open covering of A and G, ACU, (i<n). Moreover, for some
i (i<n) U, U,=¢ implies G; ~G,=¢ if j<n, and G, U,=¢ if j=n.
Now we shall construct G, satisfying the above conditions. Let F,
=A_{(;</”Gi)v(;;Uz)} and F;=(A— Un)vLiJ{(:iIUi/‘\ U.=¢; i<n}.

Then F, and F) are closed subsets of X and are disjoint by the
assumption of induction. Sinece X is normal, there is an open subset

G, of X such that F,CG, and G, F.,=¢. Then G, ACU, and
{G,~ 4, -+, G, A, U, ---} is an open covering of A, Let U, U,
=¢ for some 7. If i<mn, then G,CF); so G, ~G,=¢. If i>n, UCA
—U,; so UCA—U,CF/; that is, U, G,=¢. By induction we have
a collection {G;} of open subsets of X. First we show that {G, - A}
is a covering of A. Let & be an arbitrary point of A. Since {U} is
star-finite, there is a number =, such that j>n, implies ¢ U,. Then
from the covering {G; ~ 4, -+, Guy~A, Us .1, ---} of A 2 is contained
in some G, A (i<n,). This shows that {G;} covers A. Next, if
U~ U;=¢ (¢>7), by the induction the collection {G,, -- -, G;, U,,,, -+ -}
shows G, G,=¢. Finally, we construct the desired {V,}. If {G.} is
locally finite in X, let G,=V,. If {G;} is not locally finite in X, let
X, be the set of all points at which {G;} is not locally finite. Then
X, is closed in X and X, A=¢. Indeed, the closedness of X, is easy
from the open of X—X,. Let = be an arbitrary point of A. Since
{U,} is star-finite, only finite number {U,, ---, U;} of {U,} contain
and there is a number =, such that k>, implies U, U;,=¢ for
each j, j<mn. This shows that if we let the neighborhood of = be
Oxzfﬂ{Gi[Gtaw}, then Oz intersects only G, (¢<m,); that is, {G}} is
locally finite at x. Now we have X, A=¢. Since X is normal, there

is an open subset U of X such that ACU and U X,=¢. If we let
V.=G,~ U, then {V,} is locally finite collection of open subsets of X
which cover A and V, - ACG, - ACU..

Theorem 2. Let f be a multi-valued monotone closed continuous
mapping of a topological space X onto a topological space Y and let
for every point x of X fx be an S-space**> with Lindelof property.
If X is paracompact and Y is normal, then Y is paracompact.

Proof. By Lemma 1 f is a closed continuous mapping of X onto

fX and by the definition f is one-to-one, FX is paracompact. Let

**) A space is S-space if every open covering has the star-finite open covering as
refinement.
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U={U,} be an arbitrary open covering of Y. Since for every point x
of X fx is an S-space with the Lindelof property, by Lemma 3 there
is a countable locally finite collection {V%]|i=1,2,-.-} of open subsets
of Y such that Vi, A contained in some element of Ul. Let V*= ~ V.

Then {D,(V?®) ~fX|xeX} is an open covering of fX. Since fX is para-
compact, there is a locally finite open covering {D,(V) ~fX|Be2}
which is a refinement of {D,(V?®)  fX|xeX}. By Lemma 2 for each
Be R there is an open subset ¥V, of Y such that D,(V,) ~fX=D,(V,) ~fX
and V,CV, For each 8eQ we pick up one V= such that Dy(V;) ~fX
CD(V") ~fX and let Wi=Vz _ V, (i=1,2,--.). Then {W:| i=1, 2,
--+; Bef} is a locally finite open covering of Y. Indeed, since W¢, is
open and {V,|BeQ} covers Y, (Wi i=1,2,---; BeQ} is an open
covering of Y. Let y be an arbitrary point of Y. Then there is a
point « of X such that ye<fx. Since {Dl(ff'ﬁ)/\f—X | Be 2} is locally finite,
the only finite number {D,(V,) ~fX| i=1,2,- .-, n} intersect the neigh-
borhood D,(Ofx) of (fx); that is, Ofx intersects only Vﬂ , 0=1,2,--., n).
Since for each 4 ffﬂFDL W and (W] j=1,2,---} is locally finite,

3=
there is a neighborhood O,y of ¥ which intersects only finite number

of {Wf;‘] j=1,2,---}. Let Oy:@fxﬁi(i]loiy. Then Oy is a neighbor-
hood of y and intersects only finite number of {WZ|i=1,2,...; fec2}.
This shows that {W?|i=1,2,---; e} is locally finite. Moreover,
each WZC some VZC some Uecll shows that {W!|i=1,2,-..; e}
is a refinement of {U,}. This completes the proof.

If we use the Lemma 1 of [2], we have the following theorem
in the same way:

Theorem 3. Let f be a multi-valued monotone closed continuous
mapping of a topological space X onto a topological space Y and let
Sfor every point x of X fx be paracompact (countably paracompact).
If X is paracompact and Y is collectionwise normal, then Y is para-
compact (countably paracompact).

We know that, for a (one-valued) closed continuous mapping, if
the inverse image of every point is compact, then the paracompactness
(countably paracompactness) is invariant under the inverse mapping
(see [8]).

By Theorems 1 and 2 (or 8) we have that, for a (one-valued) closed
continuous mapping f of a topological space X onto a T,-space Y, if
X is normal (collectionwise normal) and for every point y of ¥ f~'(y)
is an S-space with the Lindelof property (paracompact), then the para-
compactness is invariant under the inverse mapping of f. In particular,
if f'(y) is countably paracompact in collectionwise normal space X,
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then X is countably paracompact.
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