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Osaka University of the Liberal Arts and Education

(Comm. by K. KUNUGI, M.J.A., March 12, 1960)

V. I. Ponomaleff [1 has defined the new space X for T-space X.
According to him the space X is the set of all non-empty closed
subsets of X and topology is defined as follows" for each point (F0)
of X and for every neighborhood OFo of F0 in X D(OFo) is the set
of all closed subsets of X contained in OFo and these D(OFo) form
the bases of the neighborhoods of (F0) in X. In our paper we shall
use his definition for the topological space X (without T-axiom).

A multi-valued mapping f of a topological space X into a topo-
logical space Y is monotone if for each point x of X fx is closed in
Y and for each pair of distinct points x and x’ of X fxfx’-.

We use the definitions due to him" the continuity of a mapping

f of X into Y is that for every point x of X and for each neighbor-
hood Ofx of fx in Y there is a neighborhood Ox of x in X such that
fOxOfx; the closedness of f is the closedness of the image of every

closed subset of X; f is a one-valued mapping of X into Y which
maps every point x of X to a point (fx) of Y.

Theorem 1. If f is a one-valued closed continuous mapping of
a topological space X onto a Tl-space Y, then the inverse mapping

f- is a multi-valued monotone closed continuous mapping of Y onto
X. Conversely, if g is a multi-valued monotone closed continuous
mapping of a topological space X onto a topological space Y and if
for every point y of Y g-(y)-x such that gxy, then g- is a one-
valued closed continuous mapping of Y onto X.

Proof. Since f is continuous, f- is closed, and since Y is T-space,
f- is monotone. To prove that f- is continuous, let y be an arbitrary
point of Y and Of-(y) be an arbitrary neighborhood of f-(y) in X.
Since f is closed, there is an open inverse set (Of-(y))o* such that
f-(y)(Of-(y))oOf-(y). Then V=f(Of-(y))o is a neighborhood
of y in Y such that f-(V)-(Of-(y))oOf-(y). This completes the
proof that f- is a multi-valued monotone closed continuous mapping.

Conversely, let g be a multi-valued monotone closed continuous
mapping of X onto Y. To show that g- is closed, let A be an arbi-
trary closed subset of Y. Since g-(A)-{x]gxA; xX}, and if x0
is an arbitrary point of X--g-(A), then gxoA=; that is, gxoX--A.

*) (Of-l(y))o is the union of all f-(p) (pc Y) such that f-(p)COf-(y).
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Since g is continuous, there is a neighborhood Oxo of x0 in X such
that gOxoX--A. This shows gOxoA- and OxoX--g-l(A). So
X--g-(A) is open and g-(A) is closed. Finally, we shall prove that
g- is continuous. Let Y0 be an arbitrary point of Y and let Og-(yo)
be an arbitrary neighborhood of g-l(yo) in X. Since g is closed,
g(X--Og-(yo)) is closed in Y and since g(X--Og-(yo)) [J {gxlxOg-(yo);
xeX}- U{gxlgxgOg-(yo)-; xeX}, g(X-Og-(yo))yo. Let U-- Y
--g(X--Og-(yo)), then U is a neighborhood of Y0 in Y and g-(U)
={xlgx U4:0; xeX}-{x]gxg(X--Og-(yo))-;
xX}-Og-(yo); that is, g- is continuous at Y0. Then g- is continuous
and this completes the proof.

In the following, we shall prove the invariance of topological
properties under a multi-valued monotone closed continuous mapping
under some restrictions.

Lemma 1. If f is a multi-valued monotone closed continuous
mapping of a topological space X into a topological space Y, then

f is a (one-valued) closed continuous mapping of X onto fX (in Y).
Proof. The continuity of f is followed from [1. We shall prove

the closedness of f. Let F be an arbitrary closed subset of X, then

fF--{(fx)lx F], so it is sufficient to prove that fX--fF is open in fX.
Let (fXo) be an arbitrary point of fX--fF, then x0 F; that is, fxofF
=O. By the closedness of f V= Y--fF is an open subset of Y con-

taining fXo and so DI(V)fX is an open subset of fX containing (fXo).
Since V- Y--fF, D(V)fF=O. This shows that fX--fF is open.
Thus Lemma 1 is proved.

Lemma 2. Let f be a multi-valued monotone closed continuous
mapping of a topological space X onto a topological space Y. If D(U)
is a non-empty open subset of Y, then -- fx is open in Y.

Proof. By the continuity of f, V:f-D(U)--{xi(fx)eD(U)} is
open in X. Since f is closed, f(X--V) is closed in Y. But f(X--V)
=fx-Y--fx-Y- fx, so fx-Uis open in Y. This

completes the proof.

Lemma 3. Let X be a normal space and A be a closed subset

of X. If {U} is a countable star-finite open covering of A, then
there is a countable locally finite collection {V} of open subsets of X
such that VA:U (i-1,2,...) and {VA} covers A.

Proof. We shall prove it by induction. For U, let F:A-- U
and F:A--U,, then they are disjoint closed subsets of X. (If F--,
we can omit U from {U} and if F--, we begin from U.) Since
X is normal, there is an open subset G of X such that F:G and
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G.,FI-. Then G.,AU and {GA, U.,...} is an open covering
of A. If UU,-- for some i (i>1), then U,A--U and A--U is

closed, so GU-. We assume that there is a collection {G,li<n} of
open subsets of X such that {GA, GA, ..., G_A, Un, U/, ...}
is an open covering of A and G,AU (i<n). Moreover, for some

i (i<n) UU- implies GG= if 3"<n, and GU-O if jn.
Now we shall construct G. satisfying the above conditions. Let F

" F.--(A--U)"’[J{GIU U--; i<n].=A {(G,) U,)] and

Then F and F are closed subsets of X and are disjoint by the
assumption of induction. Since X is normal, there is an open subset

G of X such that FG and GF--. Then G.,AU and
{G.,A,..., G.,A, U+, ...} is an open covering of A. Let UU

for some i. If i< n, then G,F; so GG-. If i >n, UA
--U; so U,A--UF; that is, U,.,G--. By induction we have
a collection {G,} of open subsets of X. First we show that
is a covering of A. Let be an arbitrary point of A. Since {U,} is
star-finite, there is a number no such that j>no implies x e U. Then
from the covering {GA, ..., G,o,A, U0/, ...} of A z is contained
in some G,.,A (i<=no). This shows that {G} covers A. Next, if
bU- (i>j), by the induction the collection [G, ..., G,, U,/, ...}
shows G,G-. Finally, we construct the desired {V,}. If {G,} is
locally finite in X, let G,-V,. If {G} is not locally finite in X, let
X0 be the set of all points at which [G,} is not locally finite. Then
X0 is closed in X and Xo,A=. Indeed, the closedness of X0 is easy
from the open of X--Xo. Let be an arbitrary point of A. Since
U} is star-finite, only finite number { U0, ..., U} of { U,} contain
and there is a number no such that k>no implies U..,U,= for
each 3", 3" n. This shows that if we let the neighborhood of be
Ox-{G, lGx}, then Ox intersects only G, (in0); that is, {G,} is

locally finite at x. Now we have X0A--. Since X is normal, there
is an open subset U of X such that A U and UXo-. If we let
V,-G U, then {V,} is locally finite collection of open subsets of X
which cover A and

Theorem 2. Let f be a multi-valued monotone closed continuous
mapping of a topological space X onto a topological space Y and let
for every point x of X fx be an S-space** with Lindel6f property.
If X is paracompact and Y is normal, then Y is paracompact.

Proofi By Lemma 1 f is a closed continuous mapping of X onto

fX and by the definition f is one-to-one, fX is paracompact. Let
**) A space is S-space if every open covering has the star-finite open covering as

refinement.
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lt--{U} be an arbitrary open covering of Y. Since for every point
of X fx is an S-space with the Lindelhf property, by Lemma 3 there
is a countable locally finite collection V i--- 1, 2,... } of open subsets
of Y such that V.A contained in some element of

Then {D(V)fXleX} is an open covering of fX. Since fX is para-

compact, there is a locally finite open covering

which is a refinement of {D(V)fX]eX}. By Lemma 2 for each

fie/2 there is an open subset V of Y such that D(V)fX--D(V)fX
and VV. For each e/2 we pick up one V such that D(V)fX
D(Vx)fZ and let Wi--VV (i-1, 2,...). Then {Wl i-l, 2,

e/2} is a locally finite open covering of Y. Indeed, since W is

open and {Vlfleg} covers Y, {W] i-1,2,...; /eg} is an open
covering of Y. Let y be an arbitrary point of Y. Then there is a

point of X such that yef. Since {D(V)fXIe9 is locally finite,

the only finite number {D(V)fX] i--l, 2,..., n} intersect the neigh-

borhood D(Qfx) of (fx); that is, Ofx intersects only V (i--1, 2,..., n).
Since for each i V-1Wj and {Wi 3"-- 1, 2,... } is locally finite,

there is a neighborhood Oy of y which intersects only finite number

of W] 3"- 1, 2,... }. Let Oy--Ofx Oy. Then Oy is a neighbor-

hood of y and intersects only finite number of {W i- 1, 2,...;/ e 2}.
This shows that {W i- 1, 2,...; e/2} is locally finite. Moreover,
each W some V some Uelt shows that W i- 1, 2,...; e/2}
is a refinement of {U}. This completes the proof.

If we use the Lemma 1 of [2, we have the following theorem
in the same way:

Theorem :. Let f be a multi-valued monotone closed continuous
mapping of a topological space X onto a topological space Y and let
for every point of X fx be paracompact (countably paracompact).
If X is paracompact and Y is collectionwise normal, then Y is para-
compact (countably paracompact).

We know that, for a (one-valued) closed continuous mapping, if
the inverse image of every point is compact, then the paracompactness
(countably paracompactness) is invariant under the inverse mapping
(see 3).

By Theorems 1 and 2 (or 3) we have that, for a (one-valued) closed
continuous mapping f of a topological space X onto a Tl-space Y, if
X is normal (collectionwise normal) and for every point y of Y f-(y)
is an S-space with the Lindelhf property (paracompact), then the para.-
compactness is invariant under the inverse mapping of f. In particular,
if f-(y) is countably paracompact in collectionwise normal space
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then X is countably paracompact.
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