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66. The Space of Bounded Solutions of the Equation
du=pu on a Riemann Surface

By Mitsuru NAKAI
Mathematical Institute, Nagoya University
(Comm. by K. KUNUGI, M.J.A., May 19, 1960)

Throughout this note we denote by R a Riemann surface. Suppose
that p is a collection {p(z)} of non-negative continuously differentiable
functions p(z) of local parameters z=«-+1iy such that for any two
members p(z) and p(2’) in p there holds the relation

p(z")=p(2)|dz/d2’ |*.
We say that such a p is a density on R. We consider the partial
differential equation of elliptic type
(1) Au(z)=p(2)u(2),
which is invariantly defined on B. We denote by B,(R) the totality
of real-valued bounded solutions of this equation (1) on R. Here a
solution of (1) is always assumed to be twice continuously differenti-
able. Then B,(R) is a Banach space with the uniform norm
||| =supg|u|.
We are interested in the comparison problem of Banach space structures
of B,(R) for different choices of densities p. It is remarked, as Ozawa
proved in [3], that if R is of parabolic type, then B,(R) is the real
number field and B,(R) consists of only zero unless p=0. Hence we
may exclude this trivial case as far as we are concerned with spaces
B,(R). So we assume that R is of hyperbolic type throughout this note
unless the contrary is stated. Concerning this comparison problem
Royden [4] proved that if there exists a positive constant @ such that
a'p<g<ap

holds on R except a compact subset of R, then Banach spaces B, and
B, are isomorphic. In this note we give a different criterion for B,
and B, to be isomorphic and state an application of this to removable
singularities of bounded solutions of (1).

Theorem 1. If two densities p and q on R satisfy the condition

(2) [ [1p@—e@)|dzdy < oo,

then Bamnach spaces B,(R) and B, (R) are isomorphic.

Proof” Let {R,} be an exhaustion of R, i.e. R, is a subdomain
of R whose closure is compact and whose relative boundary oR, con-
sists of a finite number of closed analytic Jordan curves and moreover

1) For elementary knowledge concerning the equation 4u=pu on a Riemann surface,
refer to Myrberg [1, 2] and also to Royden [4, section 1].
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{R,} satisfies
Enclzn+l; R= URn'
n=1

For real-valued bounded continuous function f defined on R, we define
transforms Tf and tf as follows:

(TF)(zo)=f (20)+(2r)* f f (p(2) —q(2))g,(2, 2,) f (2) dzdy
and “

tNe)=F @)+ [ [ @@ —p@)o,(e 20 (@) dady,

where ¢,(2,2,) and g,(2,2,) are Green’s functions of R with poles z,
associated with the equations gu=7pu and gu =qu respectively. These
are well defined in virtue of the condition (2). We also define auxiliary
transforms T,f and t,f of real-valued bounded continuous function f
defined on R, as follows:

(T )E) =@ +@n) " [ [ —a@)ei (e 2 @) dady
and e

(4= @) +@0) [ [@@—p@)ei (e, 20 £(@) dady,

where 99°(z, 2,) and g{(z, z,) are Green’s functions of R, with poles
z, associated with the equations du=pu and du=qu respectively.

If g is continuous on R, and is a solution of Ju=pu (or Ju=qu)
on R,, then T,g (or t,g) is continuous on R, and satisfies the equa-
tion dJu=qu (or du=pu) on R, and also
(3) Tz, =lgllz, (or [[t.9]lz,=I9llz,)

To verify this, we take a small circle U, with radius » around 2z,
and a subdomain G® of R, such that G°CR, and G*/'R, as &e\0
and 9G¢ consists of the same number as R, of analytic closed Jordan
curves and put Gi=G*—U,. Let h (or h.) be the solution of Dirichlet
problem with respect to the equation Ju=qu and the domain R, (or

G*®) with the boundary value g on oR, (or 0G®). Using Green’s formula
we have

I f (P(2)—4(@)95°(@, 2)9(2) dady

=/ f (6906 A5~ DA, 2)

(4)
= f (06,297 dote)— (e dgoe,2)

= [90e, o) [o@ dg2 )+ [96)*dg2, ),

3!7.,] GE Uy
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where ¢%(z, 2,) is the Green’s function of G* with pole 2z, associated
with the equation du=qu. It is easy to see that

(5) [, 29*daz)=00)

and "

(6) _ f 9@ *dg (2, 2) = — f he(2)* dgP(2, 20) = 2rhe(20)
and ” BGE

(7) [o(@)*dg(e, @) =—2r9(e0)+00).

From (4), (5), (6) and (7), we get
hez)=0(z0)+ @) [ [(00)— a(@)e2(@, 2)9(@) dady +00).

n

Hence making 7\0, we see that
(8)  hlz)=g(2)+(@n)" f [ ¢er—aente, oo dady.

As g—h is uniformly continuous on R, and vanishes on 9R,, so we
have lim sup |g—h|=0 or hm sup |he—h|=0. From this, using

£40 Ge
maximum principle, we see that hm [|he—h|lge=0. In particular
gy0

(9) lim he(20) = h(2y).
On the other hand, g¢i°(z, 2,) /’g‘“’(z Z,) as e\\0 and

| p(2) —a(2)| 95°(2, 20) | 9(2) | <|P(2) —a(2) | 957(2, ) | 9(2) |
and the latter is integrable on R,. Thus, by Lebesgue’s convergence
theorem,

lim f [ &) —a(@ai e 2)a(e) darly
(10
=/} f (P~ @)z, #)9(@) dady.

From (8), (9) and (10) we see that A(z,)=(T,9)(z,). This proves our
first assertion. The equality (8) is now a direct consequence of the
maximum principle. Similarly, the assertion concerning ¢, is verified.

From the above, we easily see that
(11) t(T.9)=g  (or T,(t,9)=9)
for any ¢ continuous on R, and satisfying du=pu (or du=qu) on
R,.

On the other hand, if a uniformly bounded sequence {f,} of real-
valued continuous functions f, defined on R, converges to a function
f defined on R uniformly on each compact subset of R, then for each
point z, in R
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(12) (T ) (z)=1im,(T,.f)(20).
In fact, let K be an arbitrary compact subset of R and |f,|<M for

all n. As g,(7,2,)—95(?, 2,)"\0 uniformly on each compact subset of
R, so we get

aw)=| [ 6@ —a@)0,@ 20 @dsdy— [ [0 —a@)o e 20
X1, dedy| < =Fulls+ 19,01 [ [10G)—0(2) 0,62, ) dady

+2M | | |p(2)—q(2)|9,(2, 2,) dwdy.
J] 1rer=a@la
From this we have

lim, a,(2,) <2M f f | p(2)—q(2) | 9,(2, 2,) dady.

R-K
In virtue of the condition (1), letting K,"R, we see that
(13) lim, @,(z,)=0.

Then the assertion (12) follows from (13) and from the inequality
(T ) = (Tof @) | <1 £ o) — Fol20) |+, (20).
Now take a function  in B,(R) (or B,(R)). From (3), the se-
quence {T,u} (or {t,u}) is bounded by |||l in the absolute value.
Hence by (12) we see that

(14) Tu=lim,T,u (or tu=1lim,t,u)
and
(15) I Tl <I|Twl|<|lwll  (or [Itul|<||tu||<] ),

where the convergence is uniform on each compact subset of R by
the Harnack type inequality. Hence Tw (or tu) belongs to B,(R) (or
B,(R)). In virtue of (14) and (15), we may apply (12) to (11) with
g=u and then we get
HTu)=u (or T(tu)=mu).

This shows that T' (or ¢) is a one to one mapping of B,(R) (or B,(R))
onto B,(R) (or B,(R)) and T=t"*. As T and ¢ do not increase norm,
so T and ¢ are isometric. Thus Banach spaces B,(R) and B,(R) are
isomorphic. This completes the proof of Theorem 1.

Assume that a part I" of the ideal boundary of R can be realized
in a larger surface R’ as a relative boundary consisting of a finite
number of analytic closed Jordan curves and p is the restriction on
R of a density on R’. In this case, we denote by BL(R) the subspace
of B,(R) consisting of every function in B,(R) which vanishes con-
tinuously on I. With an obvious modification of the proof of Theorem
1, we can prove the following

Theorem 1/. Under the assumption that

(2" ff| p(2)—q(z) | dedy < =,

R
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Banach spaces BE(R) and BEI(R) are isomorphic.
Remark. From the proof we see at once that the assumption (2)
in our Theorem 1 (or 1’) can be replaced by the following weaker one:

(16) [[19@ =01,z 2 +0,(z, 2) dudy < oo

for some points 2, and 2, in R. In the case ¢=0, (13) is equivalent
to the following

an f f P(2)94(2, 2,) dardy < oo

for some point 2z, in R. Hence in particular we conclude that under
the assumption (17), Banach spaces HB=B, and B, are isomorphic.
It is an open question whether or not (14) is also a necessary con-
dition for HB and B, to be isomorphiec.

Let p be a density on R. A compact subset £ in R is said to
be B,-removable if for any subdomain D of R containing E and for
any bounded solution # of du=pu on a component Dy of D—E whose
boundary contains the boundary of D can be continued to a solution
of Ju=pu on D. In this definition, we may assume without loss of

generality that D is compact and the boundary dD of D consists of
a finite number of analytic closed Jordan curves. As an application
of our comparison theorem, we state
Theorem 2. For any density p on R, a compact subset E of R
is B,-removable if and only if the logarithmic capacity of E is zero.”
Proof. First notice that D, and D are hyperbolic Riemann sur-
faces. Let p and ¢ be any two densities on B. By maximum principle,
it is clear that
(18) B”(D)=B3*(D)={0}.
As D is compact, so we have

a9 [ [ire—a@|dudy< [ [IpE)—a@)| dady < oo,

Dy D
Assume that E is B,-removable. Then any function % in B}’(Dy) is
the restriction of a solution w’ in B3?(D). Hence by (18), =0 and
so BiP(Dj) consists of zero only. In virtue of (19), by using Theorem
1/, it holds
Bi2(D5)=B*(D)={0}.

Hence Bi°(Dj) consists of zero only.

Let v be an arbitrary element in B,(D;). We may assume without
loss of generality that v is continuous on dD|JDj Let v' be con-

tinuous on D and v'=v on 8D and 4v'=qv’ in D. Putting v"=v—v,

2) The ““if part’” of this theorem was proved by Myrberg [2]. Professor M.

Ozawa kindly informed me that he has also obtained the same result as our Theorem
2.
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we see that v” is in BJ?(Dj) and hence =0 or v=v on D, Thus
E is B removable.

Hence we have proved that for any two densities » and ¢ on R,
E is B, -removable if and only if E is B,removable. In particular,
taking ¢=0, and noticing that B,-removable set is nothing but a set
of logarithmic capacity zero, we get the assertion of our theorem.
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