66. The Space of Bounded Solutions of the Equation $\Delta u = pu$ on a Riemann Surface

By Mitsuru NAKAI

Mathematical Institute, Nagoya University (Comm. by K. KUNUGI, M.J.A., May 19, 1960)

Throughout this note we denote by R a Riemann surface. Suppose that p is a collection $\{p(z)\}$ of non-negative continuously differentiable functions p(z) of local parameters z=x+iy such that for any two members p(z) and p(z') in p there holds the relation

$$p(z') = p(z) |dz/dz'|^2.$$

We say that such a p is a *density* on R. We consider the partial differential equation of elliptic type

 $(1) \qquad \qquad \underline{\Delta u(z)} = p(z)u(z),$

X

which is invariantly defined on R. We denote by $B_p(R)$ the totality of real-valued bounded solutions of this equation (1) on R. Here a solution of (1) is always assumed to be twice continuously differentiable. Then $B_p(R)$ is a Banach space with the uniform norm

$$|u|| = \sup_{R} |u|.$$

We are interested in the comparison problem of Banach space structures of $B_p(R)$ for different choices of densities p. It is remarked, as Ozawa proved in [3], that if R is of parabolic type, then $B_0(R)$ is the real number field and $B_p(R)$ consists of only zero unless $p \equiv 0$. Hence we may exclude this trivial case as far as we are concerned with spaces $B_p(R)$. So we assume that R is of hyperbolic type throughout this note unless the contrary is stated. Concerning this comparison problem Royden [4] proved that if there exists a positive constant a such that $a^{-1}p \leq q \leq ap$

holds on R except a compact subset of R, then Banach spaces B_p and B_q are isomorphic. In this note we give a different criterion for B_p and B_q to be isomorphic and state an application of this to removable singularities of bounded solutions of (1).

Theorem 1. If two densities p and q on R satisfy the condition

(2)
$$\int\!\!\!\int_{\mathcal{R}} |p(z)-q(z)| \, dx \, dy < \infty,$$

then Banach spaces $B_p(R)$ and $B_q(R)$ are isomorphic.

Proof.¹⁾ Let $\{R_n\}$ be an exhaustion of R, i.e. R_n is a subdomain of R whose closure is compact and whose relative boundary ∂R_n consists of a finite number of closed analytic Jordan curves and moreover

¹⁾ For elementary knowledge concerning the equation $\Delta u = pu$ on a Riemann surface, refer to Myrberg [1, 2] and also to Royden [4, section 1].

 $\{R_n\}$ satisfies

$$\overline{R}_n \subset R_{n+1}; \qquad R = \bigcup_{n=1}^{\infty} R_n.$$

For real-valued bounded continuous function f defined on R, we define transforms Tf and tf as follows:

$$(Tf)(z_0) = f(z_0) + (2\pi)^{-1} \iint_R (p(z) - q(z))g_q(z, z_0)f(z) \, dx \, dy$$

and

$$(tf)(z_0) = f(z_0) + (2\pi)^{-1} \iint_{\mathcal{R}} (q(z) - p(z)) g_{y}(z, z_0) f(z) \, dx \, dy,$$

where $g_{p}(z, z_{0})$ and $g_{q}(z, z_{0})$ are Green's functions of R with poles z_{0} associated with the equations $\Delta u = pu$ and $\Delta u = qu$ respectively. These are well defined in virtue of the condition (2). We also define auxiliary transforms $T_{n}f$ and $t_{n}f$ of real-valued bounded continuous function fdefined on R_{n} as follows:

and

$$(t_n f)(z_0) = f(z_0) + (2\pi)^{-1} \int_{R_n} \int_{R_n} (q(z) - p(z)) g_p^{(n)}(z, z_0) f(z) \, dx \, dy,$$

where $g_p^{(n)}(z, z_0)$ and $g_q^{(n)}(z, z_0)$ are Green's functions of R_n with poles z_0 associated with the equations $\Delta u = pu$ and $\Delta u = qu$ respectively.

If g is continuous on \overline{R}_n and is a solution of $\Delta u = pu$ (or $\Delta u = qu$) on R_n , then T_ng (or t_ng) is continuous on \overline{R}_n and satisfies the equation $\Delta u = qu$ (or $\Delta u = pu$) on R_n and also

(3)
$$||T_ng||_{R_n} = ||g||_{R_n}$$
 (or $||t_ng||_{R_n} = ||g||_{R_n}$).

To verify this, we take a small circle U_{η} with radius η around z_0 and a subdomain G^{ε} of R_n such that $\overline{G}^{\varepsilon} \subset R_n$ and $G^{\varepsilon} \nearrow R_n$ as $\varepsilon \searrow 0$ and ∂G^{ε} consists of the same number as ∂R_n of analytic closed Jordan curves and put $G_{\eta}^{\varepsilon} = G^{\varepsilon} - U_{\eta}$. Let h (or h_{ε}) be the solution of Dirichlet problem with respect to the equation $\Delta u = qu$ and the domain R_n (or G^{ε}) with the boundary value g on ∂R_n (or ∂G^{ε}). Using Green's formula we have

$$\int \int (p(z) - q(z)) g_{q}^{(\varepsilon)}(z, z_{0}) g(z) \, dx \, dy$$

$$= \int \int (g_{q}^{(\varepsilon)}(z, z_{0}) d(*dg(z)) - g(z) d(*dg_{q}^{(\varepsilon)}(z, z_{0})))$$

$$= \int (g_{q}^{(\varepsilon)}(z, z_{0}) * dg(z) - g(z) * dg_{q}^{(\varepsilon)}(z, z_{0}))$$

$$= - \int_{\partial U_{\eta}} g_{q}^{(\varepsilon)}(z, z_{0}) * dg(z) - \int_{\partial G_{q}^{\varepsilon}} g(z) * dg_{q}^{(\varepsilon)}(z, z_{0}) + \int_{\partial U_{\eta}} g(z) * dg_{q}^{(\varepsilon)}(z, z_{0})$$

[Vol. 36,

268

u

where $g_q^{(\varepsilon)}(z, z_0)$ is the Green's function of G^{ε} with pole z_0 associated with the equation $\Delta u = qu$. It is easy to see that

$$(5) \qquad \qquad \int_{\partial U_{\eta}} g_{q}^{(\varepsilon)}(z, z_{0})^{*} dg(z) = O(\eta)$$

and

No. 5]

$$(6) \qquad -\int_{\partial G^{\varepsilon}} g(z)^* dg_q^{(\varepsilon)}(z, z_0) = -\int_{\partial G^{\varepsilon}} h_{\varepsilon}(z)^* dg_q^{(\varepsilon)}(z, z_0) = 2\pi h_{\varepsilon}(z_0)$$

and

(7)
$$\int_{\partial U_{\eta}} g(z)^* dg_q^{(\varepsilon)}(z, z_0) = -2\pi g(z_0) + O(\eta).$$

From (4), (5), (6) and (7), we get

Hence making $\eta \searrow 0$, we see that

$$(8) h_{\varepsilon}(z_0) = g(z_0) + (2\pi)^{-1} \iint_{G^{\varepsilon}} (p(z) - q(z)) g_q^{(\varepsilon)}(z, z_0) g(z) \, dx dy.$$

As g-h is uniformly continuous on \overline{R}_n and vanishes on ∂R_n , so we have $\lim_{\varepsilon \neq 0} \sup_{\partial G^{\varepsilon}} |g-h| = 0$ or $\lim_{\varepsilon \neq 0} \sup_{\partial G^{\varepsilon}} |h_{\varepsilon}-h| = 0$. From this, using maximum principle, we see that $\lim_{\varepsilon \neq 0} ||h_{\varepsilon}-h||_{G^{\varepsilon}} = 0$. In particular

$$(9) \qquad \qquad \lim_{\varepsilon \neq 0} h_{\varepsilon}(z_0) = h(z_0).$$

On the other hand, $g_q^{(\varepsilon)}(z, z_0) \nearrow g_q^{(n)}(z, z_0)$ as $\varepsilon \searrow 0$ and

 $| p(z) - q(z) | g_q^{(\varepsilon)}(z, z_0) | g(z) | \leq | p(z) - q(z) | g_q^{(n)}(z, z_0) | g(z) |$

and the latter is integrable on R_n . Thus, by Lebesgue's convergence theorem,

(10)
$$\lim_{\epsilon \neq 0} \iint_{q^{\epsilon}} (p(z) - q(z)) g_{q}^{(\epsilon)}(z, z_{0}) g(z) \, dx dy \\= \iint_{R_{m}} (p(z) - q(z)) g_{q}^{(n)}(z, z_{0}) g(z) \, dx dy.$$

From (8), (9) and (10), we see that $h(z_0) = (T_n g)(z_0)$. This proves our first assertion. The equality (3) is now a direct consequence of the maximum principle. Similarly, the assertion concerning t_n is verified. From the above, we easily see that

(11) $t_n(T_ng) = g \quad (\text{or } T_n(t_ng) = g)$

for any g continuous on \overline{R}_n and satisfying $\Delta u = pu$ (or $\Delta u = qu$) on R_n .

On the other hand, if a uniformly bounded sequence $\{f_n\}$ of realvalued continuous functions f_n defined on R_n converges to a function f defined on R uniformly on each compact subset of R, then for each point z_0 in R

[Vol. 36,

(12)
$$(Tf)(z_0) = \lim_{n \to \infty} (T_n f)(z_0).$$

In fact, let K be an arbitrary compact subset of R and $|f_n| \leq M$ for all n. As $g_q(z, z_0) - g_q^{(n)}(z, z_0) \searrow 0$ uniformly on each compact subset of R, so we get

$$\begin{split} a_n(z_0) = & \left| \iint_R (p(z) - q(z)) g_q(z, z_0) f(z) dx dy - \iint_{R_n} (p(z) - q(z)) g_q^{(n)}(z, z_0) \right. \\ & \times f_n(z) \, dx dy \left| \leq (||f - f_n||_{\kappa} + ||g_q - g_q^{(n)}||_{\kappa} M) \iint_K |p(z) - q(z)| g_q(z, z_0) \, dx dy \right. \\ & + 2M \!\iint_{R-\kappa} |p(z) - q(z)| g_q(z, z_0) \, dx dy. \end{split}$$

From this we have

$$\overline{\lim}_n a_n(z_0) \leq 2M \int \int_{R-K} |p(z)-q(z)| g_q(z, z_0) \, dx \, dy.$$

In virtue of the condition (1), letting $K \nearrow R$, we see that (13) $\lim_{n} a_n(z_0) = 0.$

Then the assertion (12) follows from (13) and from the inequality $|(Tf)(z_0)-(T_nf_n)(z_0)| \leq |f(z_0)-f_n(z_0)|+a_n(z_0).$

Now take a function u in $B_p(R)$ (or $B_q(R)$). From (3), the sequence $\{T_n u\}$ (or $\{t_n u\}$) is bounded by ||u|| in the absolute value. Hence by (12) we see that

(14) $Tu = \lim_{n} T_n u$ (or $tu = \lim_{n} t_n u$) and

(15) $||T_nu|| \le ||Tu|| \le ||u||$ (or $||t_nu|| \le ||tu|| \le ||u||$),

where the convergence is uniform on each compact subset of R by the Harnack type inequality. Hence Tu (or tu) belongs to $B_p(R)$ (or $B_q(R)$). In virtue of (14) and (15), we may apply (12) to (11) with g=u and then we get

t(Tu) = u (or T(tu) = u).

This shows that T (or t) is a one to one mapping of $B_p(R)$ (or $B_q(R)$) onto $B_q(R)$ (or $B_p(R)$) and $T=t^{-1}$. As T and t do not increase norm, so T and t are isometric. Thus Banach spaces $B_p(R)$ and $B_q(R)$ are isomorphic. This completes the proof of Theorem 1.

Assume that a part Γ of the ideal boundary of R can be realized in a larger surface R' as a relative boundary consisting of a finite number of analytic closed Jordan curves and p is the restriction on R of a density on R'. In this case, we denote by $B_p^{\Gamma}(R)$ the subspace of $B_p(R)$ consisting of every function in $B_p(R)$ which vanishes continuously on Γ . With an obvious modification of the proof of Theorem 1, we can prove the following

Theorem 1'. Under the assumption that

(2')
$$\int\!\!\int_{R} |p(z)-q(z)| \, dx \, dy < \infty,$$

No. 5] The Space of Bounded Solutions of the Equation $\Delta u = pu$

Banach spaces $B_p^{\Gamma}(R)$ and $B_q^{\Gamma}(R)$ are isomorphic.

Remark. From the proof we see at once that the assumption (2) in our Theorem 1 (or 1') can be replaced by the following weaker one:

271

for some points z_0 and z_1 in R. In the case $q \equiv 0$, (13) is equivalent to the following

(17)
$$\int\!\!\!\int_{R} p(z)g_0(z,z_0) \, dx dy < \infty$$

for some point z_0 in R. Hence in particular we conclude that under the assumption (17), Banach spaces $HB=B_0$ and B_p are isomorphic. It is an open question whether or not (14) is also a necessary condition for HB and B_p to be isomorphic.

Let p be a density on R. A compact subset E in R is said to be B_p -removable if for any subdomain D of R containing E and for any bounded solution u of $\Delta u = pu$ on a component D_E of D-E whose boundary contains the boundary of D can be continued to a solution of $\Delta u = pu$ on D. In this definition, we may assume without loss of generality that \overline{D} is compact and the boundary ∂D of D consists of a finite number of analytic closed Jordan curves. As an application of our comparison theorem, we state

Theorem 2. For any density p on R, a compact subset E of R is B_p -removable if and only if the logarithmic capacity of E is zero.²⁾

Proof. First notice that D_E and D are hyperbolic Riemann surfaces. Let p and q be any two densities on R. By maximum principle, it is clear that

(18)
$$B_p^{\partial D}(D) = B_q^{\partial D}(D) = \{0\},\$$

As \overline{D} is compact, so we have

Assume that E is B_p -removable. Then any function u in $B_p^{\partial D}(D_E)$ is the restriction of a solution u' in $B_p^{\partial D}(D)$. Hence by (18), $u \equiv 0$ and so $B_p^{\partial D}(D_E)$ consists of zero only. In virtue of (19), by using Theorem 1', it holds

$$B_q^{\partial D}(D_E) \cong B_p^{\partial D}(D_E) = \{0\}.$$

Hence $B_q^{\partial D}(D_E)$ consists of zero only.

Let v be an arbitrary element in $B_q(D_E)$. We may assume without loss of generality that v is continuous on $\partial D \bigcup D_E$. Let v' be continuous on \overline{D} and v'=v on ∂D and $\Delta v'=qv'$ in D. Putting v''=v'-v,

²⁾ The "if part" of this theorem was proved by Myrberg [2]. Professor M. Ozawa kindly informed me that he has also obtained the same result as our Theorem 2.

M. NAKAI

we see that v'' is in $B_q^{\partial D}(D_E)$ and hence $v'' \equiv 0$ or $v' \equiv v$ on D_E . Thus E is B_q -removable.

Hence we have proved that for any two densities p and q on R, E is B_p -removable if and only if E is B_q -removable. In particular, taking $q \equiv 0$, and noticing that B_0 -removable set is nothing but a set of logarithmic capacity zero, we get the assertion of our theorem.

References

- [1] L. Myrberg: Über die Integration der Differentialgleichung $\Delta u = c(P)u$ auf offenen Riemannschen Flächen, Math. Scand., 2, 142–152 (1954).
- [2] L. Myrberg: Über die Existenz der Greenschen Funktion der Gleichung $\Delta u = c(P)u$ auf Riemannschen Flächen, Ann. Acad. Sci. Fenn., A. I., **170** (1954).
- [3] M. Ozawa: Classification of Riemann surfaces, Kôdai Math. Sem. Rep., 3, 63-76 (1952).
- [4] H. L. Royden: The equation $\Delta u = Pu$, and the classification of open Riemann surfaces, Ann. Acad. Sci. Fenn., A. I., **271** (1959).

272