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1. Introduction. Concerning the relation between a locally con-
vex space E and its dual space E’ (the totality of continuous linear
functionals), the conditions of the semi-reflexivity, the reflexivity, etc.
are well known, under the foundation of Mackey’s theorem (for ex.
[1). On the other hand, as a space of linear functionals on E, there

is a method to consider its adjoint space E (the totality of linear func-
tionals which are bounded on each bounded set in E) and the condition
of reflexivity is known [2.

In this paper, we consider the relation between the adjoint space

E and the dual space E’ of a locally convex separative space E,
especially, we give a theorem of Mackey’s type with respect to the
adjoint space (THEOREM l).

For a locally convex separative topology T of a linear space E,
its adjoint space and its dual space are denoted by (E; T) and (E; T)’,
respectively. Two locally convex topologies T1 and T2 of E are said
to be equivalent with respect to bounded set, when the concepts of the
boundedness under T and T. are identical, and this equivalence is

denoted by T b T.
2. A theorem of Mackey’s type. Let (E, F) be a separative dual

system of two linear spaces. The necessary and sufficient condition
that a locally convex separative topology T on E is compatible with
the dual system (E, F), that is, (E; T)’--F, is that T is stronger than
the topology a(E, F) and weaker than the Mackey’s topology r(E, F)
(theorem of Mackey). The following theorem is one of this type con-
cerning the adjoint space.

THEOREM 1. Let (E, F) be a separative dual system qf two linear
spaces. The necessary and sufficient condition that F is the adjoint
space of E with a locally convex separative topology T on E, or

(E; T)--F symbolically, is that:

1. T b a(E, F)
2. the Mackey’s topology r(E, F) is bornologic.
PROOF. Necessity. We denote by I, the totality of bounded sets

under the topology T, and consider a topology To on E defined by all
disks which absorb each bounded set under the topology T. To is
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called I-topology.* This topology To is bornologic and the totality of

bounded sets under To is also I, or To b T. Then (E; T0)’--(E; To)--F
under our assumption. Therefore, I is the totality of bounded sets

under the topology a(E, F), or Tb a(E, F) and To coincides with the
topology r(E, F), or r(E, F) is bornologic.

Sufficiency. The adjoint space of E with the topology r(E, F)
coincides with F on account of our assumption 2. Then (E; T)--F
because of the condition 1.

REMARK 1. When the adjoint space of E with a topology T is F,
the topology T is weaker than the topology r(E, F). But T is not
necessarily comparable with the topology a(E, F). In other words,
the dual space of E with the topology T is not necessarily the space F.

REMARK 2. For a separative dual system (E, F), there exists,
always, a topology T on E by which the dual space is F. However,
there exists not necessarily a topology of E by which the adjoint space
is F. For example, when the topology of E is "tonnel" and is not
bornologic, there is no topology T on E by which the adjoint space is
E’ for the dual system (E,E’), because the topology "tonnel" is not
else than the topology r(E, E’). Whence, the adjoint space is not E’.

3. Semi-reflexivity with respect to adjoint space. Let E be a
locally convex separative space. We denote by T its topology and by

the totality of bounded sets under the topology T. On the adjoint

space /, the topology of i-convergence is denoted by (E-, E)and the

totality of bounded sets under (E, E) is denoted by f. In the same

way, from the space E with the topology /3(E, E), its adjoint space E
and the topology (E, E) of I-convergence are defined. The topology

on E induced by /(E, E) is the -topology used in the above paragraph,
and it coincides with the initial topology T, if and only if T is bornologic.

When E coincides with E algebraically, that is, (E; (E,E))--E, E is
said to be adjoin semi-reflexive.

THEOREM 2. The necessary and sucien condition ha$ a locally
convex separative space E is adjoin$ semi-reflexive, is $ha$:

1. every bounded disk in E is a(E, E) relatively compact,

2. he $opology (E, E) is bornologic.

PROOF. When we apply THEOREM 1 to the dual system (E,E),
the condition of adjoint semi-reflexivity is that:

1’. fl(E-, Eba(, E),
*) Let /be the totality of bounded sets under the topology of 92-convergence on

-(E; T), then -topology is not else than the topology of ;-convergence on E with

respect to the dual system (E, E).
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2’. r(E, E) is bornologic.
Now, we assume the conditions 1’, 2’. Generally, the topology

(E,E) is stronger than the topology r(E,E). On account of the

condition 1’ the topology (E, E) is equivalent to the topology r(E,E)
with respect to bounded set. Then (E,E) coincides with r(E,E)
because of the assumption 2’. Therefore the topology (E,E) is

bornologic and every bounded disk in E is a(E, E) relatively compact.
Next, we assume the conditions 1, 2. On account of the condition

1, the topology r(E, E) coincides with the topology /(E, E). Then the

topology r(E--, E) is bornologic and (, E) ba(/, E).
COROLLARY 1. If a locally convex separative space E is adjoint

semi-reflexive, then E is semi-reflexive in the ordinary sense.

Because the topology a(E, E) is stronger than the topology a(E, E’).
COROLLARY 2. If a locally convex separative space E is adjoint

semi-reflexive, then its adjoint space E with the topology fl(E, E) is
adjoint reflexive.

Because, the topologies fl(E, E)and (E,E) are both bornologic.
COROLLARY 3. A locally convex separative space E is adjoint

reflexive when and only when the following conditions are satisfied:
1. the initial topology on E is bornologic,

2. the topology fl(E, E) on E is bornologic,

3. every bounded disk in E is a(E,E) relatively .compact [2.
COROLLARY 4. If a locally convex separative space E is adjoint

reflexive, then E is reflexive in the ordinary sense.
REARK 1. If A’ is a a(E’,E) relatively compact disk in the

dual space E’ of a locally convex space E, then A’ is bounded under
the topology fl(E’,E). But the converse is not necessarily true.

However, for a disk A in the adjoint space E, the concepts of a(E, E)
relative compactness and (E, E) boundedness are identical, because the

topology fl(E, E) coincides with the topology r(E, E) in E.
REMARK 2. The condition I in THEOREM 2 means that the dual

space of the space E with the topology (E, E) is the space E. In
the same method in the proof of THEOREM 2, we obtain that the
adjoint space of the dual space E’ with the topology /(E’, E) is the
space E if and only if

1. E is semi-reflexive, 2. fl(E’,E) is bornologic.

4. A condition for E=E. We apply THEOREM 1 to the dual
system composed of a locally convex separative space E and its dual
space E’. Then we obtain:
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THEOREM 3. The adjoint space E coincides with the dual space
E’ for a locally convex separative space E if and only if the topology
(E,E’) is bornologic.

That E coincides with E’ means that the initial topology in E
is stronger than the topology a(E,E). In this direction, we obtain

the following condition for E’--E.
THEOREM 4. The adjoint space E coincides with the dual space

E’ for a locally convex separative space E if and only if every disk
in E satisfying the following conditions is a neighbourhood of 0 in
E.

1. V absorbs each bounded set in E,
2. the quotient space ElF by F-- sV is one dimensional.

0

PROOF. We assume that E--E’. Let V be a disk satisfying the
conditions 1, 2. If G is an algebraic supplement of F, then G is one
dimensional. The projection V of V into G is a disk in G. Let f be
a linear functional on G such that V{z G:I (z, f} I1}V for
some 2:>1. Every element xeE is uniquely decomposed into x=ynUz,
y eF, z eG. Then we define a linear functional on E by the relation
(x,-(z, f}. If x V, I(x,}l-I(z, f}ll. Therefore, is bounded
linear functional on E because of the condition 1 and so 5 is continuous
by our assumption. If I(x,}]l, x-y-gz, then yeF.V,
and so xe (2nUl) V. Thus V is a neighbourhood of 0 in E.

Conversely, if 5 is a non zero bounded linear functional on E, then
V={x: I(x, 5}ll} is a disk satisfying the conditions 1, 2, and so V is
a neighbourhood of 0 in E or 5 is continuous.

REMARK. In the same way as the above proof, we obtain the con-

ditions for E’=E and E--E where E is the algebraic dual of E.
For an absorbant disk V in E, the former is that if ElF is one dimen-
sional then V is a neighbourhood of 0 and the latter is that if ElF is
one dimensional, then V absorbs each bounded set, where F= H eV in

0
both cases.. An example of ==E. If the topology r(E, E’) is not borno-

logic, then E’=E (REMARK 2 in the paragraph 2). Here, we give a
simple example of such E.

Let R be the segment 0, 1 and be the totality at most countable
sets in R. Or more generally, let R be an abstract set, and be a
family of subsets in R which satisfy the following three conditions:

1. R,; 2. if Ke, i--1,2,..., then UKe;
3. for each point t e R there is a set Ke such that t e K.
Let E be the linear space composed of all functions x-x(t) on R
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such that each x--x(t) is constant outside of some K: x(t)=x=const.
for tCK. Such K may be called a supporting set of x. The topology
of E is the topology of simple convergence at each point of R. Let
L be a linear functional on E such that (x,L}--x for xeE.

L is not continuous. If it is continuous, there exists teR, i--1,
2,..., k, and a positive number such that xeE Ix(t)I, i--1, 2,...,
k, implies I(x, L} I1. On the other hand, a function .x--x(t) such that
x(t)--O, i--1,2,...,k and x(t)-2 otherwise, belongs to E. Then
(x, L}--2. This is a contradiction.

L is bounded on each bounded set. If not so, there is a bounded
set A in E such that I(x,L}]n,xA, n--1,2,... Let K be a

supporting set of x, and put K--[_J K. Because of KR, Xn(to)
(X, L} for t0 K, and x(to) >n. This contradicts the boundedness

of A.
The space is a dense subspace of the space E0-Y Ct, where C

is the scalar field and the topology of E0 is the product topology of
{C; t R}. Let F be the space ] Ct, that is, the direct sum of {C; t R},
then (E, F) is a separative dual system and the topology of E is not
else than the topology a(E, F). Now, we show that each bounded set
B in F with the topology a(F, E) is a finite dimensional bounded set,
that is, there exists a finite set teR, i=1,2,...,k such that

sup [y(ti) <M, i-- 1, 2,..., k; y(t)- 0 (t ti, y B).
If not so, we can select a sequence teR and y.e B, n-- 1, 2,.

such that: Y(tn)= O; y(t)--O (re>n).
We put k--sup yn(t) (m--l, 2,...) which is finite because of the

a(F, E) boundedness of B and define an element x--x(t)eE by X(tn)--n;
x(t)--O otherwise, where =1/]]], -[n+k+’"+_k_}/ln[.
Then I(x,y}]n. This is a contradiction.

Thus, the weakly bounded set B in E’--F is equi-continuous, and
the topology of E coincides with the topology r(E, F). Therefore the
topology of E is "tonnel" but not bornologic and not complete.

6. A disk on which boutxded linear functionals are continuous.
We charaeterize a subset A of a locally convex spaee E such that every
linear functional bounded on A is continuous. This charaeterization is
a generalization of the result known for the metrizable case [3]. If
a linear functional f is bounded on A, f is also bounded on the disk
envelope of A, so we consider only a disk A.

THEOREM 5. Let A be a dislc in a locally convex space E. The
following conditions are equivalent each other.

1. For any locally convex space E1 and a linear operator u from
E into El, if u(A) is bounded in E, then u is continuous.
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2. There is a linear subspace F including A such that the quotient
topology in ElF is the strongest convex topology and A is a neigh-
bourhood of 0 in F by the relative topology.

PROOF. 1- 2. Let F be a linear subspace of E generated by A,
and v be a linear operator from E/F with the quotient topology into
E/F with any other locally convex topology. Then you is a linear
operator from E into ElF where u is the canonical operator from E
onto ElF, and vou(A)=O. Thus you and so also v is continuous on
account of the assumption 1. Therefore the quotient topology of ElF
is the strongest convex topology. Hence, F is a topological direct
factor of E. Let w be the projection from E onto F. We apply our
assumption 1 to the space F with the topology defined by the system
of the neighbourhood 2A(0) of 0 and the linear operator w. Then
w(A) is bounded in F. Therefore w is continuous, or there is a neigh-
bourhood U of 0 in E such that w(U)A.

2- 1. Because of the strongest convexity of E/F, E is decomposed
into F+G, where G is a topological supplementary of F. For a linear
operator u from E into another E, the restriction u IF is continuous
because it is bounded on A and the restriction u G is continuous on
account of the strongest convexity of G(E/F). Then u is continuous.

COROLLARY. When the topology of E is r(E,E’), the conditions
1, 2 in the above Theorem a?e also equivalent to:

3. every linear functional bounded on A is continuous.
PROOF. 1-3. This is obvious.
3-> 1. In this case, the operator u mentioned in the condition 1,

is weakly continuous and then u is continuous because the topology is
r(E,E’).

REMARK. When ElF with the quotient topology is metrizable and
infinite dimensional, there is a linear functional which is not continuous.
In the metrizable case, the strongest convexity means that the space
is finite dimensional, and this is the case considered in
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