98. Certain Congruences and the Structure of Some Special Bands

By Miyuki YAMADA

Shimane University (Comm. by K. KUNUGI, M.J.A., July 12, 1960)

1. A band is synonymous with an idempotent semigroup. Let S be a band, and $S \sim \Sigma\{S_r; r \in \Gamma\}$ its structure decomposition (cf. Kimura [1]). For each subset Δ of Γ , we first define the relation \Re_{Δ} on S as follows:

(ab=a and both a and b are contained in
	ab=a and both a and b are contained in the same $S_{\gamma}, \gamma \in \mathcal{A}$,
$a \mathfrak{R}_{a}b$ if and only if \langle	or
	ab=b and both a and b are contained in the same $S_r, \gamma \notin \Delta$.
l	the same $S_r, \gamma \notin \Delta$.
Thon it is onsilv soon	that \Re is an acuivalance relation on S

Then, it is easily seen that $\Re_{\mathcal{J}}$ is an equivalence relation on S but not necessarily a congruence.

The following two theorems have been proved by Kimura [2]:

Theorem I. $\Re_{\phi}(\Re_{\Gamma})$, where ϕ is the empty subset of Γ , is a congruence on S if and only if S is left (right) semiregular. Further, in this case the quotient semigroup $S/\Re_{\phi}(S/\Re_{\Gamma})$ is left (right) regular.

Theorem II. Both \Re_{ϕ} and \Re_{Γ} are congruences on S if and only if S is regular. Further, in this case S is isomorphic to the spined product of S/\Re_{ϕ} and S/\Re_{Γ} with respect to Γ .

In this note, we shall present a necessary and sufficient condition for $\Re_{\mathcal{A}}$ to be a congruence on *S*, and make some generalizations of Theorems I and II. However here only the main results and necessary definitions are given, and the proofs are all omitted. We will study them in detail elsewhere.¹⁾

Notations and terminologies. If M and N are two sets such that $M \supseteq N$, then $M \setminus N$ will denote the complement of N in M. The notation ϕ will denote always the empty set. Throughout the whole paper S will denote a band, unless otherwise mentioned. The structure semilattice of S and the γ -kernel,²⁾ for each γ of the structure semilattice, will be denoted by Γ and S_{γ} respectively. And the structure decomposition of S will be denoted naturally by $S \sim \Sigma\{S_{\gamma}: \gamma \in \Gamma\}$. Any other notation or terminology without definition should be referred to [1].

2. Let Δ be a subset of the structure semilattice Γ of S, and

¹⁾ This is an abstract of the paper which will appear elsewhere.

²⁾ For definition, see [1].

put $\bigcup_{\substack{\lambda \in \mathcal{A}}} S_{\lambda} = S(\mathcal{A})$. First of all, we shall define here (Γ, \mathcal{A}) -semiregularity, $\Gamma(\mathcal{A})$ -regularity and quasi-regularity.

S is called (Γ, Δ) -semiregular or $\Gamma(\Delta)$ -regular if it has the following corresponding property (P) or (P*).

 $(\mathbf{P}) \begin{cases} cabacba = caba & \text{if } ab \in S(\varDelta) \text{ and } abc \in S(\varDelta). \\ abac = bac & \text{if } ab \in S(\varDelta) \text{ and } abc \notin S(\varDelta). \\ caba = cab & \text{if } ab \notin S(\varDelta) \text{ and } abc \notin S(\varDelta). \\ abcabac = abac & \text{if } ab \notin S(\varDelta) \text{ and } abc \notin S(\varDelta). \\ abcabac = caba & \text{if } ab \notin S(\varDelta) \text{ and } abc \notin S(\varDelta). \\ \end{cases}$ $(\mathbf{P}^*) \begin{cases} cabacba = caba \\ abcabac = abac \end{cases} \text{ if } ab \in S(\varDelta) \text{ and } abc \notin S(\varDelta). \\ abcabac = abac \end{cases} \text{ and } abc \notin S(\varDelta). \end{cases}$

$$\begin{cases} caba = cab \\ abac = bac \end{cases} & \text{if } ab \in S(\varDelta) \text{ and } abc \notin S(\varDelta), \text{ or if } ab \notin S(\varDelta) \\ and & abc \in S(\varDelta). \end{cases}$$

Further, S is called quasi-regular if it becomes $\Gamma(\Delta)$ -regular for some subset Δ of Γ .

Of course, it is clear from the definition that for an arbitrary $\Gamma_1 \subset \Gamma$, $\Gamma(\Gamma_1)$ -regularity is equivalent to $\Gamma(\Gamma \setminus \Gamma_1)$ -regularity.

Under these definitions, we have

Lemma 1. S is $\Gamma(\Delta)$ -regular if and only if it is both (Γ, Δ) and $(\Gamma, \Gamma \setminus \Delta)$ -semiregular.

Lemma 2. S is quasi-regular if and only if it is the class sum of two subsets A, B such that:

Next, we shall define *bi-regularity* of bands: A band G is called bi-regular if for any given elements a, b of G it satisfies at least one of the relations aba=ba and aba=ab.

The global structure of bi-regular bands is given by

Theorem 1. S is bi-regular if and only if each γ -kernel is left or right singular.

Let $G \sim \Sigma\{G_{\omega} : \omega \in \Omega\}$ be the structure decomposition of a bi-regular band G. From Theorem 1, every ω -kernel is then left or right singular. Let Λ be a subset of Ω .

G is said to be (Ω, Λ) -regular if it satisfies the following (C):

(C) $\begin{cases} \text{For } \alpha \in \Lambda, \ G_{\alpha} \text{ is left singular.} \end{cases}$

For $\beta \notin \Lambda$, G_{β} is right singular.

It is sometimes possible that G is both (Ω, Λ_1) - and (Ω, Λ_2) -regular

for some different subsets Λ_1 and Λ_2 . Let G_1 and G_2 be bi-regular bands having the same Ω as their structure semilattices. $G_1 \sim \Sigma\{G_{\omega}^1: \omega \in \Omega\}$ and $G_2 \sim \Sigma\{G_{\omega}^2: \omega \in \Omega\}$ be their structure decompositions.

Then, G_1 and G_2 are called mutually associated bi-regular bands if

for any given $\omega \in \Omega \left\{ \begin{array}{l} G^1_{\omega} \text{ is left singular and } G^2_{\omega} \text{ is right singular,} \\ \text{or} \\ G^2_{\omega} \end{array} \right.$

 G_{ω}^{1} is right singular and G_{ω}^{2} is left singular.

The next two theorems are generalizations of Theorems I and 3. II.

Theorem 2. $\mathfrak{R}_{\mathcal{A}}$ is a congruence on S if and only if S is (Γ, \mathcal{A}) semiregular. Further, in this case the quotient semigroup S/\Re_A is a $(\Gamma, I \setminus \Delta)$ -regular band, having $S/\Re_{A} \sim \Sigma\{S_{r}/\Re_{A}: r \in \Gamma\}$ as its structure decomposition.

Theorem 3. Both \Re_{A} and $\Re_{\Gamma \setminus A}$ are congruences on S if and only if S is $\Gamma(\Delta)$ -regular. Further, in this case S is isomorphic to the spined product of S/\Re_{A} and $S/\Re_{\Gamma\setminus A}$ with respect to Γ .

Combining Lemmas 1 and 2 with Theorems 2 and 3, we obtain the following corollaries.

Corollary. If S is $\Gamma(\Delta)$ -regular, then it is isomorphic to the spined product of a $(\Gamma, \Gamma \setminus \Delta)$ -regular band and a (Γ, Δ) -regular band with respect to Γ .

Corollary. If S is quasi-regular, then it is isomorphic to the spined product of mutually associated bi-regular bands with respect to Γ .

Corollary. If S can be decomposed into the class sum of two subsets A, B having the properties (1)-(4) in Lemma 2, then it is isomorphic to the spined product of mutually associated bi-regular bands with respect to Γ .

Remark. The existence of a band which is quasi-regular but neither left semiregular nor right semiregular can be verified by giving an example.

References

- [1] N. Kimura: Note on idempotent semigroups. I, Proc. Japan Acad., 33, 642-645 (1957).
- [2] N. Kimura: Ditto. III, Proc. Japan Acad., 34, 113-114 (1958).