97. Finite-to-one Closed Mappings and Dimension. III

By Keiô NAGAMI

Ehime University, Matsuyama, Japan (Comm. by K. KUNUGI, M.J.A., July 12, 1960)

The method of proof employed in the previous note [5, Theorem 4] can be applied to new characterizations¹⁾ of dimension of metric spaces by means of a sequence of coverings, which generalize the results due to J. Nagata [7, Theorem 3] and C. H. Dowker and W. Hurewicz [2], as follows.

Theorem 1. In order that a topological space R be a metrizable space with dim $\mathbb{R}^{2^{\circ}} \leq n$ it is necessary and sufficient that there exists a sequence of locally finite coverings $\mathfrak{H}_i = \{H_a; a \in A_i\}, i=1, 2, \cdots$, of R which satisfies the following conditions.

(1) $\overline{\mathfrak{H}}_{i+1} = \{\overline{H}_{\alpha}; \alpha \in A_{i+1}\}$ refines \mathfrak{H}_i for every *i*.

(2) $\liminf_{i} \operatorname{order} (x, \mathfrak{H}_i)^{\mathfrak{H}} \leq n+1 \text{ for every } x \in \mathbb{R}.$

(3) For any point $x \in R$ and any neighborhood U of x there exists i with Star $(x, \tilde{\mathfrak{D}}_i)^{4} \subset U$.

C. H. Dowker and W. Hurewicz's characterization [2] is a direct consequence of this theorem. As a corollary of this theorem we get the following.

Theorem 2. In order that a topological space R be a metrizable space with dim $R \le n$ it is necessary and sufficient that there exists a sequence of open coverings \mathfrak{U}_i , $i=1, 2, \cdots$, of R which satisfies the following conditions.

(1) \mathfrak{U}_{i+1}^{*} refines \mathfrak{U}_i for every *i*.

(2) $\liminf_{i} \operatorname{order} (x, \mathfrak{U}_i) \leq n+1 \text{ for every } x \in \mathbb{R}.$

(3) For any point $x \in R$ and any neighborhood U of x there exists i with Star $(x, \mathcal{U}_i) \subset U$.

J. Nagata's characterization [7, Theorem 3] is a direct consequence of this theorem.

We call a covering U of a space a multiplicative⁶⁾ one if for every non-empty intersection $\bigcap_{i=1}^{k} U_i$ of elements U_i , $i=1,\dots,k$, of \mathfrak{l} is also an element of \mathfrak{l} . The maximal number n such that there

¹⁾ The detail of the content of the present note will be published in another place.

²⁾ dim R denotes the covering dimension of R.

³⁾ order (x, \mathfrak{F}_i) denotes the number of elements of \mathfrak{F}_i which contain x.

⁴⁾ Star $(x, \mathfrak{F}_i) = \bigcup \{H_{\alpha}; x \in H_{\alpha} \in \mathfrak{F}_i\}.$

⁵⁾ $\mathfrak{n}_{i+1}^* = \{ \text{Star}(U, \mathfrak{n}_{i+1}); U \in \mathfrak{n}_{i+1} \}, \text{ where } \text{Star}(U, \mathfrak{n}_{i+1}) = \bigcup \{ V; U \cap V \neq \phi \ (=\text{the empty set}), V \in \mathfrak{n}_{i+1} \}.$

⁶⁾ Cf. [1] or [7].

exists a sequence $U_1 \supseteq U_2 \supseteq \cdots \supseteq U_n \neq \phi$ of elements of a multiplicative covering \mathfrak{l} is called the length of \mathfrak{l} .

Theorem 3. In order that a topological space R be a metrizable space with dim $R \le n$ it is necessary and sufficient that there exists a sequence of locally finite multiplicative coverings \mathfrak{H}_i , $i=1, 2, \cdots$, of R which satisfies the following conditions.

(1) $\overline{\mathfrak{H}}_{i+1}$ refines \mathfrak{H}_i for every *i*.

(2) The length of $\mathfrak{H}_i \leq n+1$ for every *i*.

(3) For any point $x \in R$ and any neighborhood U of x there exists i with Star $(x, \mathfrak{H}_i) \subset U$.

This theorem is to be compared with [7, Theorem 4].

We execute to construct a dimension-preserving completion of a metric space with the aid of our characterization theorems⁷⁾ as follows.

Theorem 4. Let R be a metrizable space with dim $R \le n$. Let \mathfrak{U}_i , $i=1, 2, \cdots$, be a sequence of open coverings of R which satisfies the following conditions.⁸⁾

(1) \mathfrak{U}_{i+1}^* refines \mathfrak{U}_i for every *i*.

(2) Each element of \mathfrak{U}_{i+1} intersects at most n+1 elements of \mathfrak{U}_i for every *i*.

(3) For any point $x \in R$ and any neighborhood U of x there exists i with $\operatorname{Star}(x, \mathfrak{U}_i) \subset U$.

Then a completion S of R with respect to \mathfrak{U}_i , $i=1, 2, \cdots$, has dimension $\leq n$.

As an application of this theorem we get the following theorem, where J. Nagata's metric is a metric ρ with the following property:⁹⁾ When R is a metrizable space with dim $R \leq n$, one can define a metric $\rho(x, y)$ agreeing with the topology of R such that for every $\varepsilon > 0$ and for any point $x \in R$, $\rho(S_{\varepsilon/2}(x), y_i) < \varepsilon$ $(i=1, \dots, n+2)$ imply $\rho(y_i, y_j) < \varepsilon$ for some i, j with $i \neq j$, where $S_{\varepsilon/2}(x) = \{y; \rho(x, y) < \varepsilon/2\}$.

Theorem 5.¹⁰⁾ Let R be a metrizable space with dim $R \le n$. Then a completion S of R with respect to J. Nagata's metric on R has dimension $\le n$.

406

⁷⁾ The existence of a dimension-preserving completion has already been proved by M. Katětov [3, Theorem 3.10] and by K. Morita [4, Theorem 5.6] independently.

⁸⁾ The existence of a sequence with these conditions is guaranteed by [7, Theorem 2].

⁹⁾ Cf. J. Nagata [7, Theorem 5].

¹⁰⁾ This theorem can be proved with no use of Theorem 4 as follows: Let ρ be Nagata's metric on R and $\overline{\rho}$ a metric on S generated by ρ . Then it can be verified that $\overline{\rho}$ is also Nagata's metric on S. Hence get dim $S \leq n$. This remark is given by Prof. Morita.

References

- P. Alexandroff und A. Kolmogoroff: Endliche Überdeckungen topologischer Räume, Fund. Math., 26, 267-271 (1936).
- [2] C. H. Dowker and W. Hurewicz: Dimension of metric spaces, Fund. Math., 43, 83-88 (1956).
- [3] M. Katětov: On the dimension of non-separable spaces I, Čehoslovack Mat. Ž., 2 (77), 333-368 (1952).
- [4] K. Morita: Normal families and dimension theory for metric spaces, Math. Ann., 128, 350-362 (1954).
- [5] K. Nagami: Finite-to-one closed mappings and dimension. I, Proc. Japan Acad., 34, 503-506 (1958).
- [6] K. Nagami: Finite-to-one closed mappings and dimension. II, Proc. Japan Acad., 35, 437-439 (1959).¹¹⁾
- [7] J. Nagata: Note on dimension theory for metric spaces, Fund. Math., 45, 143-181 (1958).

¹¹⁾ Let me take this opportunity of correcting my previous paper [6]: For 'sup dim R_{α} ' in [6, Theorem 3] read 'lim inf_{α} dim R_{α} '.