95. Homological Dimension and Product Spaces

By Yukihiro KODAMA

(Comm. by K. KUNUGI, M.J.A., July 12, 1960)

Let X be a topological space and A a closed subset. Let us denote by $H_n(X, A:G)$ the n-dimensional unrestricted Čech homology group of (X, A) with coefficients in an abelian group G. The homological dimension of X with respect to G (notation: $D_*(X:G)$) is the largest integer n such that there exists a pair (A, B) of closed subsets of X whose n-dimensional Čech homology group $H_n(A, B:G)$ is not zero. It is obvious that the relation $D_*(X:G) \leq \dim X$ holds for any space X and any group G, where dim means the covering dimension. A topological space X is called full-dimensional with respect to an abelian group G in case $D_*(X:G) = \dim X$. Then the following problem arises naturally:

(*) {Given an abelian group G, what is a space which is full-dimensional with respect to the group?

The object of this paper is to give an answer to this problem (*) in case X is a locally compact fully normal space and G belongs to a class which includes several important groups. The following theorems hold.

Theorem 1. Let R be the additive group of all rationals. Then there exists a Cantor manifold M_0 with the property that a locally compact fully normal space X is full-dimensional with respect to R if and only if dim $(X \times M_0) = \dim X + \dim M_0$.

Theorem 2. Let Q_p be the additive group of all rationals reduced mod 1 whose denominators are powers of a prime p. Then there exists a Cantor manifold M_p with the property that a locally compact fully normal space X is full-dimensional with respect to Q_p if and only if dim $(X \times M_p) = \dim X + \dim M_p$.

A sequence $a = \{q_1, q_2, \dots\}$ is called a *k*-sequence if q_i is a divisor q_{i+1} for each *i* and $q_i > 1$ for some *i*. Let us denote by Z_q the cyclic group with order q_i . There exists a natural homomorphism h_i^{i+1} from $Z_{q_{i+1}}$ onto Z_{q_i} , $i=1, 2, \cdots$. By Z(a) we mean the limit group of the inverse system $\{Z_{q_i}: h_i^{i+1} | i=1, 2, \cdots\}$. In a previous paper [2, p. 390], we constructed the Cantor manifold Q(a) for each *k*-sequence *a*. The following theorem is a consequence of [3, Theorem 1].

Theorem 3. Let \mathfrak{a} be a sequence. Then a locally compact fully normal space X is full-dimensional with respect to $Z(\mathfrak{a})$ if and only if dim $(X \times Q(\mathfrak{a})) = \dim X + \dim Q(\mathfrak{a})$.

Since the cyclic group Z_q with order q is the group $Z(\mathfrak{a})$ for the

k-sequence $\{q, q, \dots\}$ and $D_*(X:G) = Max_{\alpha} D_*(X:G_{\alpha})$ in case G is a direct sum of G_{α} 's, we can characterize a space which is full-dimensional with respect to each finite group. By a consequence of Theorems 1-3, we have the following theorem.

Theorem 4. Let X and Y be locally compact fully normal spaces and G one of the following groups: 1) R, 2) Q_p for each prime p, 3) Z(a) for each k-sequence a and 4) a direct sum of the groups of 1)-3). If $D_*(X \times Y:G) = \dim X + \dim Y$, then X and Y are full-dimensional with respect to G.

Let us prove only the case $G=Q_p$. By Theorem 2, we have dim $(X \times Y \times M_p) = \dim X + \dim Y + \dim M_p$. Therefore, both the relations $\dim (X \times M_p) = \dim X + \dim M_p$ and $\dim (Y \times M_p) = \dim Y + \dim M_p$ are true. Thus, X and Y are full-dimensional with respect to Q_p by Theorem 2.

Let R_1 be the additive group of all rationals reduced mod 1. It is well known [4, Theorem 2] that every locally compact fully normal space is full-dimensional with respect to R_1 . Since $R_1 \approx \sum_p Q_p$, we have the following theorem which is similar to Dyer's theorem [1, Theorem 4.1].*)

Theorem 5. Let X and Y be locally compact fully normal spaces. If dim $(X \times Y) = \dim X + \dim Y$, then there exists a prime p such that X and Y are full-dimensional with respect to Q_p .

Let X be a locally compact fully normal space. We shall denote by $D_{*_c}(X:G)$ the homological dimension of X with respect to G defined by making use of Čech homology groups of pairs of *compact subsets* of X with coefficients in G. In general, we do not know whether two dimension functions D_* and D_{*_c} are equivalent or not. However, we have the following theorem.

Theorem 6. Let X be a locally compact fully normal space and G one of the following groups: 1) R, 2) Q_p for a prime p, 3) $Z(\mathfrak{a})$ for a k-sequence \mathfrak{a} and 4) a direct sum of the groups of 1)-3). Then Y is full-dimensional with respect to G if and only if $D_{*c}(X:G) = \dim X$.

References

- [1] E. Dyer: On the dimension of products, Fund. Math., 47, 141-160 (1959).
- [2] Y. Kodama: On a problem of Alexandroff concerning the dimension of product spaces, J. Math. Soc. Japan, 10, 380-404 (1958).

) Prof. K. Morita pointed out that our theorem is equivalent to Dyer's as follows. Let R_p be the additive group of all rationals whose denominators are coprime with a prime p. Let R_p^ be the completion, in the p-adic topology, of the ring R_p . Then the following duality holds by general duality theorem [5]: Hom $_{R_p^*}(H^n(K, L:R_p^*), Q_p) \approx H_n(K, L:Q_p)$ and Hom $_{R_p^*}(H_n(K, L:Q_p), Q_p) \approx H^n(K, L:R_p^*)$, where H^n means the n-dimensional cohomology group and (K, L) is a pair of finite simplicial complexes. Moreover, the relations $H^n(K, L:R_p^*) \neq 0$ and $H^n(K, L:R_p) \neq 0$ are equivalent.

398

- [3] Y. Kodama: On a problem of Alexandroff concerning the dimension of product spaces II, J. Math. Soc. Japan, 11, 94-111 (1959).
- [4] K. Morita: H. Hopf's extension theorem in normal spaces, Proc. Physico-Math. Soc. Japan, 23, 161-167 (1941).
- [5] ——: Duality for modules and its applications to the theory of rings with minimum condition, Sci. Rep. T.K.D. sect. A, 6, 1-60 (1958).