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1. Introduction. The main object of the present note is to
establish the following theorem, which will answer in the affirmative
to the cosine problem proposed by S. Chowla in connexion with a
question concerning zeta functions (cf. 1):

Theorem 1. Let K be an arbitrary positive number. Then there
exists a natural number no--no(K) such that for any n>no and any
set of n distinct positive integers ml, m.,..., m we have

min (cos mx+cos m.x+... +cos mx)< --K.
0x<2

Here we may take
( 1 no(K)--max (2
which is, of course, not the best possible.

As a simple generalization of Theorem 1 we can prove also that,
given a real number K>0, there is an no=no(K) such that for any
n>no and any set of n distinct positive integers m, m.,..., m, we
have

min , cos (mx+%.)< --K,
where a,,, 2,’", are arbitrary real numbers, and in particular,

rain sin mx< --K, max sin mx>K.
Thus Theorem 1 is a special case of the following
Theorem 2. Let G be a locally compact connected abelian group.

Given a real number K>0, we can find an no--no(K) such that )’or
any n>no and any set of n distinct characters Zl(x), Z.(x),..., Zn(x)
on G we have

inf Re , cz(m)< K,
where c,c.,...,c, are arbitrary complex numbers with [cj[>l (13"
<=n).

For instance, if 2,2.,...,2 are arbitrary distinct positive real
numbers, where nno, then we have

inf (cos 2x+cos 2.x+... +cos 2x)< --K.
real

2. Some lemmas. In order to prove the theorems we appeal to
a technique by P. J. Cohen 2J developed in the investigation of a
different problem, and so, to avoid ambiguity, we shall here reproduce
some of his lemmas given in [2 with a slight modification.
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Let X be the interval 0, 2z_. Let C denote the space of all
continuous functions defined on X and Co be the subset of C con-
sisting of all functions with absolute values not greater than unity.
If / is a finite measure defined on X, we denote by !!/!! the norm
of /, i.e.

Naturally, to such a measure g there corresponds a linear functional
L on C with the norm

X

where the supremum is taken over all (x) in C0.
In what follows will be supposed to be a finite measure on X

such that ]][[M, MI.
Lemma 1. Let g(x) (ljr) be a set of functions in C0 such

that

g(x)dz(x) ( r).1 1

Then, if r>2M--l, we have, for some pair

Re
2M

Lemma 2. Let (x) and g(x) be functions in C0 satisfying the
following conditions:

and

Then

that

f(x)g(x)dl(x)-0.

O

4A
Lemma 3. Let (x) and g(x) (ljr) be functions in Co such

and for all i<j,

f(x)dz(x)--A (AI),

fg(x)dl(x) 1 (1 j

_
r),

f(x)g(x)-(x)dl(x) O.

Then, if r2M-1, we have
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16M
By Lemma 1, for some pair i<3" we have

Put, in Lemma % -- with --I/M. hen

16AM 16M
since A ] Z l] M.

Lemma 4. Under the hypotheses of Lemma 3, there exist con-
stants a, b, c such that if

(x)--a(x)+ bg(x)+ c(x)g(x)(x),
<

we have ](x)[ 1 on X and

f A+ 16M
Let V denote the linear subsaee of C generated by , and

0. he measure induces a linear functional L on V with the
norm N, say. he funetional L can be extended to a functional on
the whole saee C with the same norm N, and the new functional
is given by a measure satisfying the eonditions of Lemma 8. Henee

16M
From this inequality the result follows at once.

Lemma 5. Let E={m>m>...>m} be a set of n distinct
positive integers. If r and s are natural numbers satisfying
(2)
then there exist sets F,..., F+, G,..., G of positive integers with
the following properties:

(a)
(b) for all k, lks, G-{m>m...>m} is a subset of

E and m+m--m is not contained in E if m is in F and
(c) F+ is the union of F,G and all integers of the form

m+m--m with m in F,
We denote by h(k) the smallest integer h such that mm for

all m in F. Assume that the sets F,..., F, G,..., G_ (kl) have
been chosen to satisfy the conditions (a), (b)and (c). We now define
the set G. Set m-m. Suppose that m,..., mt (tl) have been
chosen so as to satisfy (b), where m-m,)for it. We then define
m,t+-m(t+), where j(t+l) is the smallest number such that this
choice of m,e+ does not violate (b). The number of choices of
m, <m such that
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for some m in F and m, it, does not exceed
r(r--1) h(k).

2
Hence we find that

and

j(t+l)--j(t)l+r(r-- 1) h(k),
2

h(k+ 1)=j(r) r+ r(r--1) h(k) rh(k),
2

on defining the set F/ by means of (c). Since h(1)-l, it follows
that h(k)r-’. Clearly the sets F, G, and hence F,/ can be
constructed if h(s+l)n, or

.s
_

n.
That the sets F and G thus constructed contain only positive

integers is obvious.. Proof of Theorem 1. There is no loss in generality in as-
suming that Kl/2.*) Suppose now that the theorem were false.
Then there would be a real number Kl/2 such that for arbitrarily
large n there exist n distinct positive integers m,..., m for which
the inequality

cos mx+ +cos mx--K
holds for all x in X. Put

f()--K+eos m+... +cosm-- K+= +e-
hen f()0 throughout on X. Now eonsider the finite, non-negative
measure defined on X by

where d is 1/ times the ordinary Lebesgue measure on X. We
have

ll i -f
and for positive m,

f {1 ifm--m for some,eg()=
0 otherwise.

Withoug loss of generality we may suppose that
Put f--[8K and be the largest integer satisfying (). We con-
struct funetions () (1k+1), which are to be all in C,, sueh
that each () is a linear combination of e with in N and
satisfies

+ 128K
Take (x)--d’. If (x) (kl) has already been defined, then

*) For 1/2>-K>0 we may take n0(K)=l.
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by Lemmas 4 and 5 with
g(x)=e’ (ljr),

where m=m are in G, we can find a function k(x)-/(x) in Co
such that /(x) is a linear combination of e with m in F/ and

fck/,d/--l+ k--____l+1=l+___k
128K 128K 128K"

Since we must always have

it follows that

1+sG2K.
128K

If s--256K*, this inequality cannot hold, so that necessarily

which is, however, certainly impossible when nno, where no--no(K)
is defined in (1). This completes the proof of Theorem 1.

4. Proof of Theorem 2. The passage of carrying our proof of
Theorem 1 on that of Theorem 2 is substantially as indicated in [2,
Lemmas 1’ and 5, and we may omit the details.
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