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(Comm. by Z. SUETU., M.J.A., Nov. 12, 1960)

Vitali’s covering theorem, though of fundamental importance to
the theory of derivation of set-functions and interval-functions in a
Euclidean space of any number of dimensions, has the defect that
its range of applicability is restricted to the case of the usual Lebesgue
measure. In the present note the author wants to alleviate this
shortcoming by extending the theorem, in one-dimension at least, to
the case of outer Carathodory measures.

The proof for this given below is essentially a modification of
that for Vitali’s theorem, due to S. Banach and expounded on pp.
109-111 of the Theory of the Integral by S. Saks (this treatise will
be quoted simply as Saks in the sequel). The gist of our argument
consists in a simple lemma which reduces to an evident assertion in
the case of Lebesgue measure.

Our extension of Vitali’s theorem would enable us, as in Saks, to
derive a number of consequent theorems with the help of the usual
techniques of real function theory, though space limitation prevents
us from dwelling upon this matter; among other things we could
obtain analogues of not a few of the results contained in the fourth
chapter of Saks. The theory of relative derivation of set-functions,
thus established, would then be useful to deal with the curvature of
parametric curves of certain general type.

By an outer measure we shall understand in what follows an
arbitrary outer Carathodory measure in the Saks sense, defined on

the class of all subsets of the real line and vanishing for the void set.
The following lemma will be the kernel of the proof of our theorem.

Lemma. Suppose that F is an outer measure and that Io is a

linear closed interval containing another closed interval I-[a, bJ.
Given any real number F(I), let us denote by M the join of all
the closed intervals J such that
( 1 JIo, IJ nonvoid, F(J).
Then M is an interval (closed, open, or half-open) contained in Io
and we have

F(M) F(I)+2,.

Proof. Clearly I is one of the intervals J. Thus M is a con-
netted infinite subset of the real line and so an interval. Write now
A--M. (-- oo, a) and B=M. (b, oo), so that M=IAB and hence
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F(M)F(I)+F(A)WF(B). It thus suffices to show that F(A)2 and
F(B)2, say the former inequality by symmetry. We may clearly
assume A nonvoid. For each point t of A there is, by hypothesis, a
closed interval J containing t and fulfilling the conditions (1). Then
t, a J, and hence It, a)A as well as F(t, a))F(J). This
being so, let us denote by c the infimum of the set A. We have two
cases to distinguish: If ceA, then A=[c, a) and we are plainly at
an end. Otherwise we must have A=(c, a), and extracting from A a
non-increasing sequence c, c.,.., tending to the point c we readily
find that F(A)=lim F([c,a))2. This complete the proof.

Theorem. Let F be an outer measure which assumes finite values
for bounded sets. If a nonvoid family of linear closed intervals
covers in the Vitali sense a set E, i.e. if for each point t of E there
are in the family indefinitely short intervals containing t, then
we can extract from a disjoint (finite or infinite) sequence of
intervals i, I.,... covering E almost entirely (F). That is, we have

[’(E-- U ln)--O.
Poof. a) We shall first prove the theorem in the special case

in which (i) we have F(I)>0 for every interval I of and further
(ii) the set E is bounded, i.e. contained in some closed interval I0.
We may obviously assume that, in addition, all the intervals of are
situated in I0. Assuming that no finite sequence of intervals (9)
fulfils the assertion, we shall show in the sequel that there must then
exist an infinite sequence of intervals () conforming to the assertion.

We shall construct the required sequence I, I.,... by induction.
In the first place we choose for I an ambitrary interval of . When
the first n intervals have already been defined so as to be mutually
disjoint, we determine the next interval I,+ by the following process.
By hypothesis the set E,-- E--I I, cannot be void and so there
are in intervals H which intersect E, but are disjoint from all the
intervals I,..., In. The supremum of F(H) for all such H is a finite
positive number, which we denote by a,. We take now for I,+ any
H which fulfils the condition F(H)>2-a. This procedure can be
continued indefinitely and yields us an infinite disjoint sequence I,

of intervals () such that [ (I)_F(Io).
In order to see that the sequence /, L,... thus constructed covers

E almost entirely (F), write A=E--I--I and suppose, if possible,
that F(A)>O. Denoting for each n=l, 2,...by M the join of all
closed intervals J subject to the conditions

J/0, /Jnonvoid, F(J)2F(I),
we find at once, in view of the lemma, that M is an interval con-
taining 1 and such that F(M)5F(I). Consequently
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Z =<5
=1

so that the leftmost series is convergent. There is therefore a positive
integer N satisfying

F( U Mn)F(Mn)<F(A),
and this implies in particular that there must exist a point o o A
belonaina to none of the sets M,(n>N). We observe in passina that
to belongs to none of I,L,...

This beina so, let us select from , as we plainly may, an interval
I eontainina to and disjoint from the intervals .tq,..., I. Then I must
intersect at least one of the intervals 1 (n >N). For otherwise we
should obtain for each n-l, 2,... the relation

0 < F(I)a.< 2F(In +,)2F(M,
which is contradictory to the fact that F(M,)-->O as n->oo. Hence
there exists a minimal integer k>N for which II is nonvoid. It
follows immediately that II is, void for n-l, 2,..., k-,1 and that
therefore F(I)_. On the other hand, the point to cannot belong
to M and so I is not contained in M. Accordingly we infer at once
from the construction of the set M that 2Y(I)<Y(I) and hence that
2F(I)<,_. But the last inequality is obviously incompatible with
the definition of I. We have thus established the theorem under the
additional assumptions (i) and (ii).

b) We now proceed to prove our theorem, only subjeet to the
additional hypothesis (ii). For this purpose we may assume as in
part a) that all the intervals of lie in I0. Let us define (X)
--F(X)+IXI for any set X of real numbers. Then is an outer
measure which assumes finite values for bounded sets and positive
values for closed intervals. Consequently, in accordance with what
has already been proved in part a), there exists in the family a
disjoint sequence zl of intervals such that, if we denote by K the
join of all the intervals of l, then F(E--K)#(E--K)--O. This
proves the theorem under the assumption (ii).

c) We are now in a position to treat the general case. We
begin by observing that for the set E under consideration and for
any monotone ascending or descending sequence X, X2,..-of bounded
Borel sets we have
2 ) F(E. lim X) lim F(EX),

which follows directly from the theorem on p. 46 of Saks.
Let us write P,=E. [--n, n for positive integers n. We proceed

to define by induction an infinite sequence , ,... of finite families
of intervals () as follows. We choose for % any family consisting

of a single interval of . When the finite family %, has already

been defined, we write T, for the join of the intervals of %, and
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distinguish two cases according as T contains P/ or not. In the
former case we set simply %/--%. In the latter case we infer from
part b) and the relation (2) that there is a nonvoid, disjoint, finite family

of intervals (), such that
F(P+--T--U)<(n+I)-,

where U denotes the join of the intervals of lI and may plainly be
supposed disjoint from T. We define now +-%[JlI.

Thus constructed, each family is finite and disjoint. Since
%..., the join % of all the families is likewise disjoint.
Moreover F(P--T)<n- for n>l by construction. Consequently,
writing T for the join of the intervals of %, we have afortiori
F(P--T)>n- for n:>l. From the last inequality we deduce by
means of (2) that F(E--T)=0. In other words, the disjoint countable
family % of intervals () covers the given set E almost entirely (F).
The theorem is thus completely proved.

Remark. Instead of considering a family of intervals we could
as well have dealt in the above with one consisting of closed sets.
We did not put this possibility into practice because it would have
caused our argument to become somewhat cumbersome. Indeed we
should have been obliged, in that case, to take into account the pa-
rameters of regularity (F) of the closed sets under consideration, as
might be easily seen on consulting the Saks treatise for the treatment
of the Vitali theorem.


